Numerical research of stress strain state for the brick residential building in case of unexpected load beyond design value (explosion of domestic gas inside the premises).

Authors

  • М. А. Romashkina Department of Computer Technology, Institute of Airports, National Aviation University, Kosmonavta Komarova 11, 03058, Kyiv, Ukraine., Ukraine https://orcid.org/0000-0002-7158-4037

Keywords:

finite element model, explosing of domestic gas, progressive collapse, load beyond design value, constructional safety.

Abstract

Purpose. In recent years, there is a potential need for further research in constructional safety of buildings and structures. The researcher should describe indestructability of the bearing system in maintaining buildings and structures, solve the problem of survivability of structures during unexpected load beyond design value. One of such loads is the explosion of domestic gas inside the premises. Damages in separate elements of structures during domestic gas explosion could provoke progressive collapse of the structure. This paper presents results of examination of the technical state of building structures and evaluation of finite element models of 5-storey brick residential building located in Makerova Street, Stakhanov, Luganskaya oblast (region) after explosing of domestic gas. According to many building codes, actual damage of the structure may be described as progressive collapse. Methodology. Numerical analyses were carried out by finite element method with LIRA-SAPR 2014 software. In processing of results of field observation and numerical investigations, comperative analysis on the features was applied. Results. Evaluation and summary of results of real emergency case – gas explosion in brick residential building. The paper produces FE models that enable you to evaluate the damage of bearing structures of brick residential building in out-of-limit state caused by domestic gas explosion. Scientific novelty. The author suggests FE models for evaluation of explosion stability and evaluation of the damage rate for brick residential building. These models are used for retrospective nonlinear analysis of real brick building where domestic gas was exploded. Practical implications. Suggested FE models may be applied for current structural survey of explosion-hazardous premises. They also may be used for predicting losses from internal explosions for the object, city and region. The author presents computation technology that may be further used for numerical experiments with different parameters that affect the strength and location of explosion.

Author Biography

М. А. Romashkina, Department of Computer Technology, Institute of Airports, National Aviation University, Kosmonavta Komarova 11, 03058, Kyiv, Ukraine.

postgraduate student.

References

Report of the Inquiry into the Collapse of Flats at Ronan Point, Caning Town; MSO, 1968.

http://engagedscholarship.csuohio.edu/cgi/viewcontent.cgi? article=1021&context=encee_facpub

Алмазов В. О. Проблемы прогрессирующего разрушения / О. В. Алмазов // Научно-технический журнал “Государственный университет – учебно-научно- производственный комплекс”, 2009. – № 6 – С. 3-10. V. O. Almazov. The problems of progressive collapse / V. O. Almazov // Scientific and technical journal “State University – Educational-Science Production Complex”, 2014. – No.6 – p. 3-10. http://www.gu-unpk.ru/public/file/archive/6-66.pdf

Барабаш М. С. Компьютерное моделирование процессов жизненного цикла объектов строительства: Монография/ Мария Сергеевна Барабаш. – К.: Изд-вл «Сталь», 2014. – 301 с. M. Barabash. Computer simulation of life cycle of the structures: Monograph/ Maria Barabash. – K.: Publ. ‘Steel’, 2014. – 301 p. http://www.liraland.ru/books/12/1676/

Городецкий A. С. Некоторые аспекты расчета зданий на устойчивость к прогрессирующему разрушению / А. С. Городецкий, М. С. Барабаш // Строительство, материаловедение, машиностроение // Сб. научн. Трудов. – Дн-вск: ПГАСА, 2009. – №. 50. – С. 157 - 162. A. Gorodetsky. Several aspects for analysis of structures on resistance to progressive collapse / A. Gorodetsky, M. Barabash // Construction, material science, mechanical engineering // Collection of research papers. – Dn.: PSACEA, 2009. – No. 50.

– p. 157 - 162. http://er.nau.edu.ua:8080/handle/NAU/12273

Расторгуев Б. С. Проектирование зданий и сооружений при аварийных взрывных воздействиях: учебное пособие / Б. С. Расторгуев, А. И. Плотников, Д. З. Хуснутдинов. – М.: Издательство Ассоциации строительных вузов, 2007. – 152 с. B. Rastorguev. Design of buildings and structures in accidental explosions: tutorial / B. Rastorguev, A. Plotnikov, D. Khusnutdinov. – M.: Publ. Association of building institutes, 2007. – 152 p. http://www.zodchii.ws/books/info-560.html

Рекомендации по предотвращению прогрессирующих обрушений крупнопанельных зданий. Ю. М. Стругацкий, Г. И. Шапиро, Ю.А. Эйсман. Москомархитектуры. М., 1999. Recommendations on preventing progressive collapse in large-panel structures. Y. Strugatsky, G. Shapiro, Y. Ejsman. Moscow City Architecture Committee. M., 1999. http://s-doc.ru/rekomendacii-76

Powell, Graham. Progressive Collapse: Case Studies Using Nonlinear Analysis. SEAOC Annual Convention, Monterey, August 2004. http://ascelibrary.org/doi/abs/10.1061/40753%28171%2921

Gilmour J.R. and Virdi K.S. Numerical modelling of the progressive collapse of a framed structures as a result of impact or explosion. 2nd int. PhD. Symposium in civil engineering, Budapest 1998 Kaewkulchai G. and Williamson E.B. Beam element formulation and solution procedure dor dynamic progressive collapse analysis, Journal "Computer and Structures" 82 (2004), Pp. 639-651. http://fib.bme.hu/proceedings/gilmour.pdf

Leyendecker, E.V. and Ellingwood, B.R., 1977, "Design Methods for Reducing the Risk of Progressive Collapse in Buildings," NBS Building Science Series 98, National Bureau of Standards, Washington, DC. http://books.google.com.ua/books/about/Design_methods_f or_reducing_the_risk_of.html?id=g9_HRXBTx2EC&redir_esc=y

McGuire, W., 1974, "Prevention of Progressive Collapse," Proceedings of the regional Conference on Tall Buildings, Asian Institute of Technology, Bangkok, Thailand.

American Society of Civil Engineers (ASCE), (2005), -Minimum Design Loads for Buildings and Other Structures,ǁ SEI/ASCE 7-05, Reston, Va http://dwg.ru/dnl/9354

New York City Building Code, (1998), ―Resistance to Progressive Collapse Under Extreme Local Loadsǁ http://gisceu.net/PDF/U580.pdf

General Services Administration (GSA), (2003), ―Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization

Projectsǁ http://www.engr.psu.edu/ae/thesis/portfolios/2008/dsf139/D ocuments/GSA.pdf

British Standards Institute, (2000), ―Structural Use of Steelwork in Building, Part 1: Code of Practice for Design - Rolled and Welded Sections,ǁ BS 5950-1:2000 http://ces-legenda.com/wp-content/uploads/2013/09/BS- 5950-Part-1-Structural-use-of-steelwork-in-building1.pdf

National Research Council of Canada, (1975, 1977, 1980, 1990, 1995), ―National Building Code of Canada,ǁ Ottawa, Canada http://people.scs.carleton.ca/~roth/iit-publicationsiti/docs/NRC-45866.pdf

Московские городские строительные нормы. Многофункциональные высотные здания и комплексы: МГСН 4.19-05. – [Введен в действие с 28-12-2005-]. – M., 2005. – 71 с. – (Московские городские строительные нормы). Moscow city building code. Multifunction high-rise buildings and complexes: MGSN 4.19-05. – [valid from 28- Dec-2005-]. – M., 2005. – 71 с. – (Moscow city building code). http://gostrf.com/norma_data/46/46475/index.htm

Проектирование высотных жилых и гражданских сооружений: ДБН В.2.2-24:2009. – [Введен в действие с 01-09-2009]. – К.: Минрегионстрой Украины, 2009. – 103 с. – (Государственные строительные нормы Украины). Design of high-rise residential and civil buildings: DBNV.2.2-24:2009. – [valid from 01-Sept-2009]. – K.: Minregionstroy of Ukraine, 2009. – 103 p. – (State building codes of Ukraine). http://minregion.gov.ua/attachments/files/bydivnitstvo/texni chne-regulyuvannya/normuvannja/22_24_2009.pdf

Рекомендации по защите жилых зданий с несущими кирпичными стенами при чрезвычайных ситуациях. - М.: Москомархитектура, 2002. - 18с. Recommendations on protection of civil structures with bearing brick walls in emergencies. - M.: Moscow City

Architecture Committee, 2002. – 18p. http://standartgost.ru/g/pkey-14294845695/Рекомендации

Пангаев В. В. О деформативных характеристиках цементных кладочных растворов / Пангаев В. В., Сердюк В. М. //Изв. вузов. Строительство, 2004.– №9. –C. 110 - 113. V. Pangaev. About deformation properties of cement mortars / V. Pangaev, V. Serdyuk. //Publ. Construction, 2004.– No.9. –p. 110 - 113. http://ecatalog.volgatech.net/cgibin/ irbis64r_13/cgiirbis_64.exe?LNG=&Z21ID=&I21DBN=ST ATY&P21DBN=STATY&S21STN=1&S21REF=10&S21FM T=fullwebr&C21COM=S&S21CNR=20&S21P01=0&S21P02 =0&S21P03=U=&S21STR=624.012.2

Комаров А. А. Прогнозирование динамических нагрузок при аварийных взрывах в помещениях. Журнал «Механизация строительства», №6, 2000. С.21-26. A. Komarov. Prediction of dynamic loads in emergencies with explosions inside premises. ‘Mechanization in construction’ journal, No.6, 2000. p.21-26. http:// http://tekhnosfera.com/prognozirovanie-nagruzok-otavariynyh- deflagratsionnyh-vzryvov-i-otsenka-posledstviy-ihvozdeystviya- na-zdaniya-i-sooruzh

Комаров А. А. Моделирование аварийных выбросов взрывоопасных веществ в помещении / А. А. Комаров Е.В. Бузаев, Г.В. Васюков, Р.А. Загуменников // Журнал «МГСУ», 2014. - №10. - С.132-140. A. Komarov. Modeling of accidental releases of explosive substances in the room / A. Komarov, E. Buzaev, G. Vasiukov, R. Zagumennikov // MGSU ‘journal, 2014. – No.10. - p.132-140. http://vestnikmgsu.ru/files/archive/issues/2014/10/ru/14.pdf

Published

2015-04-28

Issue

Section

Creating of high-tech ecological complexes of Ukraine based on the concept of balance (stable) development