Determination of absolute error of interpolation of curve with given geometric characteristics

Ye. A. Gavrylenko, Yu. V. Kholodnyak, А. V. Naidysh

Abstract


Purpose. The purpose of the research is to develop a method for determining of absolute error of interpolation of a point set by a non-oscillating plane curve from the condition of monotonous change of differential-geometric characteristics along the initial geometric image. Methodology. Analysis of methods of estimating of accuracy of interpolation by the methods of continuous geometric modeling showed that disadvantages of these methods are caused by the decision to compare the obtained model with a known predefined function, which differs from the initial curve to which the points set belongs. The method of determining the accuracy of the interpolation, which is based on the formation of curve on the basis of its geometrical characteristics, is proposed in this article. The assumption, on the basis of which the curve is formed, is following: if there is a curve that interpolates the original points set and there are no singular points for this curve (an inflection point, points of change direction of curvature, torsion values, etc.), then there are no such singular points on the original object. Two components of the occurrence of error are considered. The error, with which the formed curve that interpolates the original points set represents the original curve, is estimated as the area of possible location of all curves whose characteristics are identical to those of the original curve. The interpolating curve is forming in the form of a condensed points set, which consists of an arbitrarily large number of points determined from the condition of the possibility of interpolating its curve by a line with given characteristics. The error of the formation of the interpolating curve is estimated as the area of possible location of the curve interpolating the condensed points set. Findings. The solution of the problem for a plane curve on the basis of the condition of absence of oscillations and the condition of monotonous change of curvature values is present in this article. The area of location of curve, which is determined by the condition of convexity of curve, is maximal and is the initial. Addition of the following conditions (monotonous change of curvature along the curve and assignment of fixed positions of tangents and curvature values at initial points) localizes the area of possible solution. Originality. The developed method for estimating of accuracy of interpolation of a curve makes it possible to determine the absolute error with which the model represents the initial curve and the accuracy with which the interpolating curve represents any curve with given properties. Practical value. The developed method can be used in solving of problems that require the determination of maximum absolute error with which the model represents the original object. It is approximate calculations, the construction of graphics that describe of processes and phenomena, the formation of models of surfaces on the physical sample.

Keywords


interpolation error; ordered points set; oscillation; monotonous change of differential-geometric characteristics; area of location of curve

References


Bakhvalov N.S., Zhidkov N.P. and Kobelkov G.M. Chislenyie metody [Numerical methods]. Moscow: BINOM, 2008, 636 p. . (in Russian).

Havrylenko Ye.A. and Kholodniak Yu.V. Vyznachennia diapazoniv heometrychnykh kharakterystyk monotonnoi dyskretno predstavlenoi kryvoi [The definition of diapasons of geometric characteristics of a monotonous discretely represented curve]. Pratsi Tavriiskogo derzhavnogo agrotekhnologichnogo universytetu [Proceedings of Tavria State Agrotechnological University]. TDATU. Melitopol, 2012, no. 4, iss. 54, pp. 38-42. (in Ukrainian).

Grigoryev M.I., Malozemov V.N. and Sergeyev A.N. Polinomy Bernshteyna i sostavnye krivye Bezye [Bernstein polynomials and composite Bezier curves]. Zhurnal vychislitelnoy matematiki i matematicheskoy fiziki [Journal of Computational Mathematics and Mathematical Physics]. Moskva, 2006, Iss. 43, no. 11, pp. 1962-1971. (in Russian).

Naidysh V.M. Dyskretna interpoliatsiia [Discretely interpolation]. Melitopol: Liuks, 2008, 250 p. . (in Ukrainian).

Kholodnyak Yu.V. and Gavrylenko Ye.A. Formuvannya geometrichnikh kharakteristik pry modelyuvanni monotonnoi dyskretno predstavlenoi kryvoi [Formation of geometrical characteristics at modeling of the monotonic discretely represented curve]. Prikladna geometriya ta inzhenerna grafika [Applied geometry and engineering graphics]. KNUBA. Kyiv, 2013, no. 91, pp. 292-296. (in Ukrainian).

Chudinov A.V. Teoreticheskie osnovy inzhenernoy grafiki [Theoretical foundations of engineering graphics]. Novosibirsk: Izd-vo NGTU, 2010, 396 p. . (in Russian).

Chernousova E., Golubev Y. and Krymova E. Ordered smoothers with exponential weighting. Electronic Journal of Statistics. 2013, vol. 7, pp. 2395–2419. Available at: https://projecteuclid.org/euclid.ejs/1380546591.

Gavrilenko E.A. and Kholodnyak Yu.V. Discretely geometrical modelling of one-dimensional contours with a regular change of differential-geometric characteristics. Dynamics of Systems, Mechanisms and Machines (Dynamics). Omsk, 2014, pp. 1-5. Available at: http://ieeexplore.ieee.org/document/7005654/.

Argyros Ioannis K. and George Santhosh On the convergence of Newton-like methods restricted domains. Numerical Algorithms. 2017, vol. 75, iss. 3, pp. 553-567. Available at: https://link.springer.com/article/10.1007 /s11075-016-0211-y.

Ivan Mircea A note on the Hermite interpolation. Numerical Algorithms. 2015, vol. 69, iss. 3, pp. 517-522. Available at: https://link.springer.com/article/10.1007/s11075-014-9909-x.

Zadorin I. Lagrange interpolation and Newton-Cotes formulas for functions with boundary layer components on piecewise-uniform grids. Numerical Analysis and Applications. 2015, vol. 8, iss. 3, pp. 235–247. Available at: https://link.springer.com/article/10.1134/S1995423915030040


GOST Style Citations


1. Бахвалов Н. С. Численные методы / Н. С. Бахвалов, Н. П. Жидков, Г. М. Кобельков. – [6-е изд.] – Москва: БИНОМ, 2008. – 636 с.


2. Гавриленко Є.А. Визначення діапазонів геометричних характеристик монотонної дискретно представленої кривої / Є.А. Гавриленко, Ю.В. Холодняк // Праці Таврійського державного агротехнологічного університету / ТДАТУ. – Мелітополь, 2012. – Вип. 4: Прикладна геометрія та інженерна графіка, т. 54. – С.38–42.


3. Григорьев М. И. Полиномы Бернштейна и составные кривые Безье / М. И. Григорьев, В. Н. Малозёмов, А. Н. Сергеев // Журнал вычислительной математики и математической физики. – Москва: Наука, 2006. – Т. 46, № 11. – С. 1962–1971.


4. Найдиш В. М. Дискретна інтерполяція / В. М. Найдиш. – Мелітополь: Люкс, 2008. – 250 с.


5. Холодняк Ю. В. Формування геометричних характеристик при моделюванні монотонної дискретно представленої кривої / Ю. В. Холодняк, Є. А. Гавриленко // Прикладна геометрія та інженерна графіка: міжвід. наук.- техн. збірник / Київський національний університет будівництва та архітектури. – Київ, 2013. – Вип. 91. – С. 292-296.


6. Чудинов А. В. Теоретические основы инженерной графики / А. В. Чудинов. – Новосибирск: Изд-во НГТУ, 2010. – 396 с.


7. Chernousova E. Ordered smoothers with exponential weighting / E. Chernousova, Y. Golubev, E. Krymova // Electronic Journal of Statistics. – 2013. – Vol. 7. – P. 2395–2419. Режим доступу: https://projecteuclid.org/euclid.ejs/1380546591. Назва з екрана. – Перевірено: 22.09.2017.


8. Gavrilenko E. A. Discretely geometrical modelling of one-dimensional contours with a regular change of differentialgeometric characteristics / E. A. Gavrilenko, Yu. V. Kholodnyak // Dynamics of Systems, Mechanisms and Machines (Dynamics). – Omsk, 2014. – P. 1-5. Режим доступу: http://ieeexplore.ieee.org/document/7005654/. Назва з екрана. – Перевірено: 22.09.2017.


9. Argyros Ioannis K. On the convergence of Newton-like methods restricted domains / Ioannis K. Argyros, Santhosh George // Numerical Algorithms. – 2017. – Vol. 75, Issue 3. – P. 553-567. Режим доступу: https://link.springer.com/article /10.1007/s11075-016-0211-y. Назва з екрана. – Перевірено: 22.09.2017.


10. Ivan Mircea A note on the Hermite interpolation / Mircea Ivan // Numerical Algorithms. –2015. – Vol. 69, Issue 3. – P. 517-522. Режим доступу: https://link.springer.com/article/10.1007/s11075-014-9909-x. Назва з екрана. – Перевірено: 22.09.2017.

11. Zadorin I. Lagrange interpolation and Newton-Cotes formulas for functions with boundary layer components on piecewise-uniform grids / I. Zadorin // Numerical Analysis and Applications. – 2015. – Vol. 8, Issue 3. – P. 235–247. Режим доступу: https://link.springer.com/article/10.1134/S1995423915030040. Назва з екрана. – Перевірено: 22.09.2017



Refbacks

  • There are currently no refbacks.