Finite element modeling of the bulldozer blade – clay soil interaction

А. О. Shimanovsky, M. H. Abdulkader

Abstract


Abstract. Purpose. The choice of rational geometrical parameters for working parts is one of the topical problems in the design  process  of  modern  earthmoving  machines.  Nowadays  to  find  soil  cutting  force  it  is  applied  the  experimental  data  –  the  base  for  values of soil resistivity for cutting. However, this parameter depends on many factors that can not always be considered. Therefore it  is required to develop theoretical approaches to modeling of the construction machinery working parts -soils interaction taking into  account  soil  elastic-plastic  properties.  The  purpose  of  the  presented  work  is  to  develop  numerical  solution  methods  for  such  an  interaction problem.  Methodology.  There  was supposed an algorithm  for finite element  modeling of the bulldozer blade-clay  soil  contact interaction considering the soil properties described by the extended Drucker-Prager model in ABAQUS software system. To create  a  soil  model  it  was  applied  the  8-node  C3D8  finite  element.  This  element  uses  linear  interpolation  in  each  direction  and  represents the first-order element. The explicit scheme for integrating of the elements motion equations by time was used. Findings. The distribution of stresses and strains in the soil array for the case of blade horizontal movement was established. It is shown that  the obtained results correspond to the experimental data presented in the investigations of other researchers. There were found the  time-dependences for the driving forces which providing the blade movement with a given velocity for the different cutting layer thicknesses. The analysis  of the blade slope angle influence on the cutting force angle was performed. It was demonstrated that the  two times increase in the blade velocity leads to a need for soil cutting power requirement increase in 2,4...2,8 times depen ding on  the  cut  layer  thickness.  Originality.  There  was  developed  the  method  of  finite  element  solution  for  the  problem  of  the  dynamic  contact interaction between earthmoving machine working part and the soil. The method allows to take into account the peculiarities  of soil elastic-plastic deformation. The influence of the cut layer thickness and the blade slope angle on the value of force ensuring  the soil movement was established.  Practical value.  The application of the developed method allows to optimize the design of the  blade, to choose optimal modes for the machine operation depending on the physical and mechanical properties of the cut soil. The results  also  make  it  possible  to  determine  theoretically  power  requirements  for  the  bulldozer  power  unit  to  ensure  the  highes t  operational efficiency of the construction machines.


Keywords


finite element modeling; contact interaction; Drucker-Prager model; bulldozer blade

References


Nushtaev D., Ryzhov S., Vysotskiy V. and Zhirkov A. Analiz effektivnosti parallel'nykh vychisleniy v srede SIMULIA Abaqus na vychislitelnoy platforme Aurora G-Station [Parallel computing efficiency analysis in the SIMULIA Abaqus environment on the computing platform Aurora G-Station]. SAPR i grafika [CAD systems and Graphics], 2016, no. 4, pp. 57–61 (in Russian). http://tesis.com.ru/infocenter/downloads/abaqus/abaqus_sapr0416.pdf

Berezin I.M. and Zalazinskiy A.G. Opredelenie usloviy plasticheskogo techeniya nekompaktnykh materialov [Identification of the determinative correlations of plastically compressed materials]. Fundamental'nye issledovaniya [Fundamental researches], 2013, no 8, pp. 19–23 (in Russian). http://www.fundamental-research.ru/pdf/2013/8-1/31862.pdf

Filatov V. A. Vzaimodeystvie gusenichnogo buldozera s gruntom [Interaction of caterpillar bulldozer with the ground]. Internet-vestnik VolgGASU. Seriya: Politematicheskaya [Internet-bulletin of VSUACE. Series Multi-Topic], 2013, no. 1 (25), pp. 1–

(in Russian). http://vestnik.vgasu.ru/attachments/Filatov-2013_1(25).pdf

Armin A. Mechanics of soil-blade interaction. Thesis for the degree of doctoral of philosophy. Saskatoon, 2014. 173 p. https://ecommons.usask.ca/bitstream/handle/10388/ETD-2014-08-1615/ARMIN-DISSERTATION.pdf

Sane A., Wasfy T. M., Wasfy H. M. and Peters J. M. Coupled Multibody Dynamics and Discrete Element Modelling of Bulldozers Cohesive Soil Moving Operation. ASME Proceedings, 2015, vol. 6: 11th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Paper No. DETC2015-47133. – 15 p. doi: 10.1115/DETC2015-47133 http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=2483858

Bravo E. L., Suarez M. H., Cueto O. G., Tijskens E. and Ramon H. Determination of basics mechanical properties in a tropical clay soil as a function of dry bulk density and moisture. Revista Ciencias Tecnicas Agropecuarias, 2012, vol. 21, no. 3, pp. 5–11. http://scielo.sld.cu/pdf/rcta/v21n3/rcta01312.pdf

Goshtasb A. K., Desbiolles J. and Fielke J. Circular Disc Blade Considerations in Soil Force Prediction Modelling. Journal of Agricultural Science and Technology, 2014, no. 4, pp. 371–383. http://www.davidpublishing.com/davidpublishing/Upfile/8/18/2014/2014081872121385.pdf

Taheri Sh., Sandu C., Taheri S. and Gorsich D. Hybrid soft soil tire model (HSSTM). Part I: tire material and structure modeling. Blacksburg: Virginia Polytechnic Institute and State University, 2015. 41 p. http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA616952

Ibrahmi A., Bentaher H. and Maalej A. Soil-blade orientation effect on tillage forces determined by 3D finite element models. Spanish Journal of Agricultural Research, 2014, vol. 12, no. 4, pp. 941–951. doi: 10.5424/sjar/2014124-5766. http://revistas.inia.es/index.php/sjar/article/download/5766/2168

Ono I., Nakashima H., Shimizu H., Miyasaka J. and Ohdoi K. Investigation of elemental shape for 3-D DEM modeling of interaction between soil and a narrow cutting tool. Journal of Terramechanics, 2013, vol. 50, no 4, pp. 265–276. doi: 10.1016/j.jterra.2013.09.001 http://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/179452/1/j.jterra.2013.09.001.pdf

Li X., Moshell J. M. Modeling soil: realtime dynamic models for soil slippage and manipulation. SIGGRAPH '93: Proceedings of the 20th annual conference on Computer graphics and interactive techniques. New York, ACM, 1993, pp. 361–368. doi: 10.1145/166117.166162 http://dl.acm.org/citation.cfm?id=166162&dl=ACM&coll=DL&CFID=846541977&CFTOKEN=45999711

Mootaz A. Е., Hamilton R. and Boyle J. T. Simulation of soil–blade interaction for sandy soil using advanced 3D finite element analysis. Soil and Tillage Research, 2004, vol. 75, no. 1, pp. 61–73. doi: 10.1016/S0167-1987(03)00156-9. http://www.sciencedirect.com/science/article/pii/S0167198703001569

Wang S., Yan S., Xu Z. and Yang Y. Numerical analysis of dynamic response mechanism of rock by TBM disc cutter. The Electronic Journal of Geotechnical Engineering, 2014, vol. 19, pp. 17017–17024. http://www.ejge.com/2014/Ppr2014.901ma.pdf

Brown O. F. Finite element analysis of blade-formation interactions in excavation. Master Thesis. Rolla, 2014. 104 p. http://scholarsmine.mst.edu/cgi/viewcontent.cgi?article=6133&context=masters_theses

Shimanovsky A. O., Abdulkader M. H. and Kuzniatsova M. G. Finite element modelling of contact between spherical indenter and Elastic-Plastic body. Applied Mechanics and Materials, 2015, vol. 797, pp. 307–313. doi:

4028/www.scientific.net/AMM.797.307 http://www.scientific.net/AMM.797.307

Zaied M. B., Dahab M. H. and El Naim A. M. Development of a mathematical model for angle of soil failure plane in case of 3-dimensional cutting. Current Research in Agricultural Sciences, 2014, vol. 1, no. 2, pp. 42–52. http://www.pakinsight.com/pdf-files/agr/68/CRAS-2014-1(2)-42-52.pdf


GOST Style Citations


1.  Анализ эффективности параллельных вычислений в среде SIMULIA Abaqus на вычислительной платформе Aurora  G-Station / Д. Нуштаев, С. Рыжов, В. Высоцкий, А. Жирков // САПР и графика. – 2016. – № 4. – С. 57–61.

2.  Березин,  И.  М.  Определение  условий  пластического  течения  некомпактных  материалов  /  И.  М.  Березин,  А.  Г.  Залазинский // Фундаментальные исследования. – 2013. – № 8. – С. 19–23.

3.  Филатов, В. А. Взаимодействие гусеничного бульдозера с грунтом / В. А. Филатов // Интернет-вестник ВолгГАСУ.  Сер.: Политематическая. – 2013. – № 1 (25). – С. 1–5.

4.  Armin, A. Mechanics of soil-blade interaction: thesis for the degree of doctoral of philosophy / Ahad Armin; University of  Saskatchewan. – Saskatoon, 2014. – 173 p.

5.  Coupled Multibody Dynamics and Discrete Element Modelling of Bulldozers Cohesive Soil Moving Operation / A. Sane, T. M. Wasfy, H. M. Wasfy, J. M. Peters // ASME Proceedings. – 2015. – Vol. 6: 11 Th International Conference on Multibody Systems,  Nonlinear Dynamics, and Control. – Paper No. DETC2015-47133. – 15 p.

6.  Determination of basics  mechanical properties in a tropical clay soil as a function of dry bulk density and moisture / E. L.  Bravo, M. H. Suarez, O. G. Cueto, E. Tijskens, H. Ramon // Revista Ciencias Tecnicas Agropecuarias.  –  2012. – Vol. 21, No 3.– P.  5–11.

7.  Goshtasb, A. K. Circular Disc Blade Considerations in Soil Force Prediction Modelling / A. K. Goshtasb, J. Desbiolles, J.  Fielke // Journal of Agricultural Science and Technology. – 2014. – No. 4. – P. 371–383.

8.  Hybrid soft soil tire model (HSSTM). Part I: tire material and structure modeling: Technical Report / Sh. Taheri, C. Sandu, S.  Taheri, D. Gorsich. – Blacksburg: Virginia Polytechnic Institute and State University, 2015. – 41 p.

9.  Ibrahmi, A. Soil-blade orientation effect on tillage forces determined by 3D finite element  models / A. Ibrahmi, H. Bentaher,  A. Maalej // Spanish Journal of Agricultural Research. – 2014. – Vol. 12. – № 4.– P. 941–951.

10.  Investigation of elemental shape for 3-D DEM modeling of interaction between soil and a narrow cutting tool / I. Ono, H.  Nakashima, H. Shimizu, J. Miyasaka, K. Ohdoi // Journal of Terramechanics. – 2013. –Vol. 50, No 4. – P. 265–276.

11.  Li, X. Modeling soil: realtime dynamic models for soil slippage and manipulation / X. Li, J. M. Moshell // SIGGRAPH '93:  Proceedings of the 20th annual conference on Computer graphics and interactive techniques.  –  New York: ACM, 1993.  –  P. 361–368.

12.  Mootaz, A. Е. Simulation of soil–blade interaction for sandy soil using advanced 3D finite element analysis / A. Е. Mootaz,  R. Hamilton, J. T. Boyle // Soil and Tillage Research. – 2004. – Vol. 75, No. 1. – P. 61–73.

13.  Numerical analysis of dynamic response mechanism of rock by TBM disc cutter [Electronic Resource] / S. Wang, S. Yan, Z.  Xu,  Y.  Yang  //  The  Electronic  Journal  of  Geotechnical  Engineering.  –  2014.  –  Vol.  19.  –  P.  17017–17024.  –  Available  at http://www.ejge.com/2014/Ppr2014.901ma.pdf (Accessed 15 August 2016).

14.  Brown, O. F. Finite element analysis of blade-formation interactions in excavation: thesis for the degree of Master of Science  in mining engineering / Osei Frempong Brown; Missouri University of Science and Technology. – Rolla, 2014. – 104 p.

15.  Shimanovsky,  A.  O.  Finite  element  modelling  of  contact  between  spherical  indenter  and  Elastic-Plastic  body  /  A.  O.  Shimanovsky, M. H. Abdulkader, M. G. Kuzniatsova // Applied Mechanics and Materials. – 2015. – Vol. 797. – P. 307–313.

16.  Zaied, M. B. Development of a mathematical model for angle of soil failure plane in case of 3-dimensional cutting / M. B.  Zaied, M. H. Dahab, A. M. El Naim // Current Research in Agricultural Sciences. – 2014. –Vol. 1.– No. 2. – P. 42–52.



Refbacks

  • There are currently no refbacks.