Study of climate indoor after stop heating system for the reference room

Authors

  • I. A. Kolesnik State Higher Education Establishment "Pridneprovsk State Academy of Civil Engineering and Architecture", 24-A, Chernishevskogo st., Dnepropetrovsk 49005, Ukraine, Ukraine

Keywords:

microclimate, construction materials, walling, thermal performance, reference room

Abstract

Purpose. In assessing climate conditions for compliance with SDS 3.3.6.042-99 "Sanitary norms of microclimate of industrial premises," one of the requirements to the parameters of a microclimate temperature of the internal air of premises. To ensure the regulatory parameters of the microclimate in buildings in the cold season is heating system. At the same time, as internation-al experience shows in Ukraine has not yet resolved the question of energy saving, which leads to unnecessary use of coolants without considering temperature indoors and the heat loss through the building envelope. Therefore, it became necessary to carry out investigations of changes in the internal temperature of rooms and cooling time by turning off the heating system for the standard room, which allows to evaluate the conformity of indoor climate control and sanitary standards to ensure and maintain its process parameters if necessary. Methodology. Theoretical and experimental studies were carried out on the basis of fundamental knowledge in the field of thermal processes and techniques for solving problems of heat transfer, modeling of dynamic processes, methods and analysis of random processes, methods of mathematical statistics and forecasting. Findings. In carrying out osnovі doslіdzhen ot-rimanі values i fallow temperature vnutrіshnogo povіtrya i hour yogo oholodzhennya for Etalon primіschennya pokladenі based otsіnki oholodzhennya primіschen, SSMSC shaping can Buti vikoristanі for otsіnki mіkroklіmatu primіschen at nestatsіonarnomu rezhimі ekspluatatsії.Originality. The studies found that the reduction of indoor air room temperature depends on the heat storage capacity of the room and enclosing structures, tempo cooling radiators, domestic heat gain, specific heat loss. Character space cooling at the outlet of the steady state for the investigated building is identical and follows a logarithmic dependence. Practical value. Studies have established the time to reach the critical temperature and the microclimate of engineering networks for different types of buildings at different rates based on the rate of thermal storage cooling heating appliances, household heat gain, the specific heat at outdoor temperatures - cold five days and months of the heating season. These dependencies are universal and allow you to manage the process to ensure indoor climate and safe operation of utilities.

Author Biography

I. A. Kolesnik, State Higher Education Establishment "Pridneprovsk State Academy of Civil Engineering and Architecture", 24-A, Chernishevskogo st., Dnepropetrovsk 49005, Ukraine

Cand. Sci. (Tech.), Department of heating, ventilation and air quality

References

Banhidi L. Teplovoymikroklimat pomeshcheniy: Raschet komfortnykh parametrov po teplooshchushcheniyam cheloveka [Thermal indoor climate: Calculation of comfort parameters Teploobmennikman] / Trans. with hung. V. M. Belyaev; Under. edited by V. I. Prokhorov and A. L. Naumov. –Moscow: Stroyizdat, 1981. – 248 p. (in Russian).

Bogoslovsky V. N. Stroitel'naya teplofizika (teplofizicheskiye osnovy otopleniya, ventilyatsii i konditsionirovaniya vozdukha): ucheb. dlya vuzov 2-ye izd., perera. i dop. [Building thermal physics (thermal fundamentals of heating, ventilation and air conditioning): proc. for universities 2nd ed., Perera. and extra]. –Moscow: Vysshaya shkola, 1982. – 415 p. (in Russian).

Demin O. B. Fiziko-tekhnicheskiye osnovy proyektirovaniya zdaniy i sooruzheniy: ucheb. posob. [Physical and technical bases of design-ing of buildings and structures: proc. p.] – Tambov: The Compromise. state technical. University press, 2004. – P. 2. – 84 p. (in Russian).

Zakharenko, I. M. and Goncharenko N. I. Vozdeystviye okruzhayushchey sredy na konstruktsii zdaniy i sooruzheniy [The impact of envi-ronment on design of buildings and structures] / Bulletin KTU. - Krivoy Rog: SIHE "Krivorzhstal national University", 2011. – Vup. 28. – S. 3 – 7. – Access mode: http://knu.edu.ua/Files/V_28_2011/18.pdf. (in Russian).

Kama F. M. Impul'snaya teoriya teploprovodnosti [Pulse theory of thermal conductivity]. – Moscow: Energiya, 1972. – 271 p. (in Rus-sian).

Kozlov V. P. and Stankevich A. V. Metody nerazrushayushchego kontrolya pri issledovanii teplofizicheskikh kharakteristik tverdykh ma-terialov [NDT Methods in the study of thermophysical characteristics of solid materials] // Ing. Fiz. zhurn. – 1984. – T. 47. – №. 2. – P. 250 – 252. (in Russian).

Kondrat'ev G. M. Regulyarnyy teplovoy rezhim [Regular thermalmode]. –Moscow: Nauka, 1964. – 487 p. (in Russian).

Kondrat'ev G. M. Teplovyye izmereniya [Thermal measurements]. –Moscow – Leningrad: Mashgiz, 1956. – 253 p. (in Russian).

Korotkov P. A., London, G. E. Dinamicheskiye kontaktnyye izmereniya teplovykh velichin [Dynamic contact measurement of thermal var-iables]. – Leningrad: Mashinostroenie, 1974. – 222 p. (in Russian).

Mishchenko S. V. Analiz i sintez izmeritel'nykh sistem [Analysis and synthesis of the measurement systems] / S. V. Mishchenko, Yu. L. Muromtsev, I. E. Tsvetkov, V. N. Chernyshov. – Tambov: The Compromise. state technical. University, 1995. – 238 p. (in Russian).

Platunov E. S. etc. Teplofizicheskiye izmereniya i pribory [Thermal measurements and instruments]. – Leningrad: Mashinostroenie, 1986. – 256 p. (in Russian).

Platunov E. S. Teplofizicheskiye izmereniya v monotonnom rezhime [Thermophysical measurements in the monotone mode]. – Lenin-grad: Energiya, 1973. – 143 р. (in Russian).

Fokin K. F. Stroitel'naya teplotekhnika ograzhdayushchikh chastey zdaniy [Building heating equipment protecting parts of buildings] / edited by J. A. Tabunshikova, V. G. Gagarin, 5th ed., revision. –Moscow: AVOK-PRESS, 2006. – 256 p. (in Russian).

Shashkov A. G. Metody opredeleniya teploprovodnosti i temperaturoprovodnosti [Methods for determining thermal conductivity and thermal diffusivity] / A. G. Shashkov, G.M. Volokhov, T. N. Abramenko, V. P. Kozlov. – Leningrad: Energiya, 1973. – 242 р. (in Russian).

Shlykov, Y. P. and Garin, E. A. Kontaktnyy teploobmen [Contact heat exchange]. –Moscow – Leningrad: Energiya, 1963. – 144 p. (in Russian).

Schneider P. Inzhenernyye problemy teploprovodnosti [Engineering problems of heat conduction]. –Moscow: Publishing house of litera-ture, 1960. – 478 p. (in Russian).

Yaryshev N. A. Teoreticheskiye osnovy izmereniya nestatsionarnykh temperatur [The theoretical basis for the measurement of transient temperatures]. – Leningrad: Energiya, 1967. – 298 p. (in Russian).

Published

2016-10-20

Issue

Section

Life Safety