Convergence solutions of pareto optimization innovative project with tube gas heaters in building structures

H. Y. Chornomorets, V. F. Irodov

Abstract


Abstract. Purpose. We have to solve the synthesis problem for development of an innovative project to build a gas tube heaters in structures. At the decision of the tube gas heaters synthesis problems arise conflicting requirements. Often, we should simultaneously consider the problem of optimization in the presence of two criteria, however in this work were used the Pareto evolutionary algorithm. The Pareto Evolutionary Algorithm is a relatively recent technique for finding or approximating the Paretooptimal set for multiobjective optimization problems. The approximation of the Pareto-optimal set involves itself two (possibly conflicting) objectives: the distance to the optimal front is to be minimized and the diversity of the generated solutions is to be maximized (in terms of objective or parameter values). For tube gas heaters located in the building structures it is following criteria: efficiency and length of the heater, from which capital costs are dependent. The article is devoted to the definition of design parameters of the heater and its operating parameters to optimize performance. The purpose of this paper is to describe multi-criteria selection for solving the problem of synthesis. Methodology. Was proposed to use multi-criteria selection involving an evolutionary search algorithm the most preferred solutions. It was applied to solve the problem of Pareto optimization of the innovation project construction with tube gas heaters in building structures. Findings. It was formulated conditions for solving the problem of Pareto optimization of the innovation project construction with tube gas heaters in building constructions. It was developed algorithm optimization problem working tube gas heaters in building structures. Originality. In the article there is an algorithm for solving the optimal parameters of the tube gas heaters in the building construction, which is carried out according to two criteria, at the same time contradict each other. It was proved the convergence solutions Pareto optimization of the innovation project construction with tube gas heaters in building constructions. Practical value. Is necessary to find a balance between capital and operating costs for the design of the tube gas heaters in structures. Must be found not one criterion for the best solution of the heating system, was proposed to use multi-criteria selection that use an evolutionary algorithm to find solutions. Results of the solution of this problem will provide a positive impact for the entire construction project.

Keywords


tube gas heaters; building structures; multi-objective selection; evolutionary search algorithm

References


Voloshyn O.F. and Mashchenko S.O. Modeli ta metody pryyniattia rishen [Models and methods of decision-making]. Kyiv, Kyivskyy universytet Publ., 2010, 336 p. (in Ukrainian).

Irodov V.F. O postroenii i skhodimosti algoritmov samoorganizatsii sluchaynogo poiska [The construction and convergence of random search algorithms for self-organization]. Avtomatyka – Automation, 1987, issue 4, pp. 34–43. (in Russian).

Nogin V.D. Prinjatie reshenij pri mnogih kriterіjah [Decision-making in many kriterіyah]. Sankt-Peterburg, JuTAS Publ., 2007. 104 p. (in Russian).

Stratan F.I. and Irodov V.F Evoliutsionnye algoritmy poiska optimalnykh resheniy [Evolutionary algorithms search for optimal solutions]. Metody optimizatsii pri proektirovanii sistem teplogazosnabzheniya – Methods of optimizing for design of heating systems, 1984, pp. 16–30. (in Russian).

Makarov I.M., Vinogradskaya T.M., Rubchinskiy A.A. and Sokolov V.B. Teoriya vyibora i prinyatiya resheniy [The theory of choice and decision-making]. Moskva, Nauka Publ., 1982. 330 p. (in Russian).

Chornomorets H.Ya. and Irodov V.F. Matematychne modeliuvannia trubchastykh hazovykh nahrivachiv, roztashovanykh u budivelnykh konstruktsiiakh [Mathematical modeling tube gas heaters located in building structures]. Naukovyj visnyk budivnytstva : Zb. nauk. prats [Scientific Bulletin construction: Coll. Science works], 2012, issue 68, pp. 395–399. (in Ukrainian).

Emmerich M. and Deutz A. Multicriteria Optimization and Decision Making. LIACS Master Course., 2006, 84 p. Available at : URL: http://natcomp.liacs.nl/MOB/material/mco4.pdf. (Access : 28 September 2015). (in English).

Ivanov S.Y. and Ray A.K. Multiobjective optimization of industrial petroleum processing units using Genetic algorithms. XV International Scientific Conference “Chemistry and Chemical Engineering in XXI century” dedicated to Professor L.P. Kulyov. Canada, 2014.– pp. 7–14. (in English).

Zitzler E. and Thiele L. An evolutionary algorithm for multiobjective optimization the strength Pareto approach. Zurich, TIK – Report Publ., 1998. 43 p. (in English).


GOST Style Citations


1. Волошин О. Ф. Моделі та методи прийняття рішень : навчальний посібник / О. Ф. Волошин, С. О. Мащенко. – Київ : Видавничо-поліграфічний центр "Київський університет", 2010. – 336 с.

2. Иродов В. Ф. О построении и сходимости алгоритмов самоорганизации случайного поиска / В. Ф. Иродов // Автоматика. – 1987. – №4. – С. 34–43.

3. Ногин В. Д. Принятие решений при многих критеріях : учебно - методическое пособие / В. Д. Ногин. – СанктПетербург : ЮТАС, 2007. – 104 с.

4. Стратан Ф. И. Эволюционные алгоритмы поиска оптимальных решений / Ф. И. Стратан, В. Ф. Иродов // Методы оптимизации при проектировании систем теплогазоснабжения. – Кишинев, 1984. – С. 16–30.

5. Теория выбора и принятия решений : учебное пособие / И. М. Макаров, Т. М. Виноградская, А. А. Рубчинский, В. Б. Соколов.  Москва : Наука, 1982.  330 с.

6. Чорноморець Г. Я. Математичне моделювання трубчастих газових нагрівачів, розташованих у будівельних конструкціях / Г. Я. Чорноморець, В. Ф. Іродов // Науковий вісник будівництва : зб. наук. пр. / Харків. нац. ун-т буд-ва та архітектури. – Харків, 2012. – Вип. 68. – С. 395-399.

7. Emmerich M. Multicriteria Optimization and Decision Making [Virtual Resource] / Michael Emmerich, Andr´e Deutz // LIACS Master Course. –2006.– 84 p. – Access Mode : URL : http://natcomp.liacs.nl/MOB/material/mco4.pdf. – Title from Screen. – Date of Access : 28 September 2015.

8. Ivanov S. Y. Multiobjective optimization of industrial petroleum processing units using Genetic algorithms / S. Y. Ivanov, A. K. Ray // XV International Scientific Conference ―Chemistry and Chemical Engineering in XXI century‖ dedicated to Professor L.P. Kulyov / University of Western Ontario, Department of Chemical and Biochemical Engineerin – Canada, 2014.– pp. 7–14.

9. Zitzler E. An evolutionary algorithm for multiobjective optimization the strength Pareto approach / E. Zitzler, L. Thiele. – Zurich : TIK - Report, 1998. – 43 p.



Refbacks

  • There are currently no refbacks.