Safety assessment of use of industrial facilities in the presence of explosion of forecast mathematical model shock tube

Authors

  • A. S. Belikov Dr. Sc. (Tech.), Prof., Ukraine
  • N. N. Nalisko Cand. Sci. (Tech.), Assoc. Prof., Ukraine
  • V. A. Shalomov Cand. Sc. (Tech.), Assoc. Prof., Ukraine
  • M. Yu. Ulitina competitor., Ukraine

Keywords:

industrial facility, explosion pressure, hazards, mathematical simulation, shock tube, closed volume, gas explosion

Abstract

Abstract. Purpose. The explosions of gas-air environment in buildings and underground structures (for example, in coal mines) are among the most dangerous industrial accidents related to the use, processing or production of combustible materials. The coal mine such explosions can occur not only in the course of maintenance work, but also during the work on the liquidation has occurred accidents - fires or explosions of methane in the mining and tunneling sites. To reliably calculate the stability of industrial facilities, installations protecting rescuers and emergency workers from repeated explosions, you must know the accurate parameters of the hazards of explosive air waves, namely the overpressure blast impulse acting on the protective structure, and other parameters. Purpose - to study the adequacy of the criteria and the establishment of the convergence of the numerical calculation results of a mathematical model of ignition and explosion of the gas mixture as a result of numerical experiment. Method. Analysis and synthesis of theoretical studies, mathematical modeling of the dynamic processes of the explosion gas mixture in a closed volume. Results.  The existing experimental and theoretical studies on the explosion pressure in a closed volume in justifying the use of a mathematical model of the shock tube to assess the safe operating conditions of industrial production facilities that use or recycle flammable liquids and substances that form combustible dust, as well as to the operating conditions of buildings and facilities where flammable gases are used (eg for heating). Adopted the criteria for assessing the adequacy of the mathematical model of the shock tube adopted in accordance with well-known approach to models of combustion processes. Scientific novelty. In the fourth set the level of adequacy of the mathematical model of the shock tube in the first stage of the evaluation of static parameters in numerical experiments. Produced by a numerical calculation of the explosion pressure gas mixture in a closed volume. Practical meaningfulness. Numerical experimental results allow us to establish reliable explosion pressures and gas mixture in a closed volume, and thus to evaluate risk factors for the safe operation of industrial facilities.

Author Biographies

A. S. Belikov, Dr. Sc. (Tech.), Prof.

Department of Life Safety, State Higher Education Establishment «Pridneprovsk State Academy of Civil Engineering and Architecture», 24-A, Chernishevskogo st., Dnipropetrovsk 49600, Ukraine

N. N. Nalisko, Cand. Sci. (Tech.), Assoc. Prof.

Department of vital activity safety, State Higher Education Establishment «Pridneprovsk State Academy of Civil Engineering and Architecture», 24-A, Chernishevskogo str., Dnipropetrovsk 49600, Ukraine

V. A. Shalomov, Cand. Sc. (Tech.), Assoc. Prof.

Department of Life Safety, State Higher Education Establishment “Pridneprovsk State Academy of Civil Engineering and Architecture”, 24-A, Chernishevskogo str., Dnipropetrovsk 49600, Ukraine

M. Yu. Ulitina, competitor.

Department of science and education of Harkiv regional state administration, Harkiv, Ukraine

References

Abramova A.V. and Girin A.A. Kompyuternoe modelirovanie avariynyih vzryivnyih protsessov [Computer simulation of emergency explosive processes]. Sbornik dokladov i tezisov II-go Mezhdunarodnogo molodezhnogo foruma «Informatsionnyie tehnologii v XXI veke» [The collection of reports and theses II-th International Youth Forum "Information technology in the XXI century"]. Ukrainskiy gosudarstvennyiy himiko-tehnologicheskiy universitet. Dnipro, 2004, pp. 4–6. (in Russian).

Ageev V. G. Matematicheskaya model formirovaniya udarnyih voln v gornyih vyirabotkah pri vzryivah metana [The mathematical model of the shock wave formation in the mines by the methane explosions]. Gornospasatelnoe delo [The mine rescue work]. 2010, issue 47, pp. 5-10. (in Russian).

Ageev V.G. and Zinchenko I.N. Modelirovanie rasprostraneniya udarnyih voln pri mgnovennoy i tsepnoy reaktsiyah goreniya metana i pyili v gornyih vyirabotkah [Modeling of shock waves propagation at momentary and chain reaction of methane and dust combustion in mine working]. «Forum hirnykiv – 2012»: Materialy mizhnarodnoi konferentsii, 3-6 zhovtnia 20012 h., Dnipropetrovsk, Ukraina [«Miners forum – 2012»: Materials of the international conference, 3-6th of October 2012, Dnipro, Ukraine]. Dnipropetrovsk: The National Mine University Publ., 2012, pp.12-16. (in Russian).

Baburin A.V. and Nesterov M.Yu. Parametryi vzryivnogo goreniya metana v okislitelnoy srede [Parameters explosive combustion of methane in an oxidative environment]. Materialyi XX nauchno-tehnicheskoy konferentsii «Sistemyi bezopasnosti –2011» [Proceedings of the IX scientific-technical conference "Safety Systems 2011"].: Akademiya gosudarstvennoy pozharnoy sluzhbyi Rossii. Moscow, 2011, pp. 163-165. (in Russian). Available at: http://ipb.mos.ru/sb/2011/section-2.

Gelfand B.E. and Silnikov M.V. Fugasnyie effektyi vzryiva [High-explosive blast effects]. Sankt-Peterburg: ООО «Izdatelstvo «Poligon», 2002, 272 p.

Korolchenko A.Ya. Protsessyi goreniya i vzryiva [The process of combustion and explosion]. Moscow: Pozhnauka, 2007, 266 p. (in Russian).

Merzhanov A.G. and Byikov V.I. Ob adekvatnosti eksperimentalnyih i teoreticheskih modeley protsessov goreniya [The adequacy of the experimental and theoretical models of combustion processes]. Fizika goreniya i vzryiva [The physics of combustion and explosion]. 2010, vol. 46, no. 5, pp. 65-70. (in Russian).

Nalisko M.M. Svidotstvo avtorskogo prava na tvir № 64123 vid 16.02.2016 Ukrayina: Komp'yuterna programa VL-MCE 1.0 «Modelyuvannya rozpovsyudzhennya udarnoyi povitryanoyi hvili v udarniy trubi» [The certificate copyright number 64123 of 02.16.2016 Ukraine: Computer program VL-MCE 1.0 «Modeling the distribution of air shock waves in the shock tube»]. Zayavnik ta vlasnik avtorskogo prava Pridniprovska derzhavna akademiya budivnitstva ta arhitekturi [The applicant and the owner of the copyright Pridneprovsk State Academy of Civil Engineering and Architecture]. (in Ukrainian).

NAPB B.03.002-2007. Normyi opredeleniya kategoriy pomescheniy, zdaniy i naruzhnyih ustanovok po vzryivopozharnoy i pozharnoy opasnosti [NAPB B.03.002-2007 The rules specify the category of rooms, buildings and outdoor facilities for explosion and fire hazard]. Kiev, 2007, 27 p. (in Russian). Available at: http://www.112.gov.ua/files/2014/8/29/NAPB.pdf.

Polandov Yu.H., Barg M.A. and Vlasenko S.A. Modelirovanie protsessov goreniya gazovozdushnoy smesi metodom krupnyih chastits [Modelling of processes of combustion gas mixture by large particles]. Pozharovzryivobezopasnost [Fire the and Explosive Safety]. 2007, vol. 16, no. 3, pp. 6–9. (in Russian).

RD 03-409-01. Metodika otsenki posledstviy avariynyih vzryivov toplivno-vozdushnyih smesey [RD 03-409-01. Methods of assessing the effects of accidental explosions of fuel-air mixtures]. Metodiki otsenki posledstviy na opasnyih proizvodstvennyih ob'ektah: Sbornik dokladov [Methods impact assessment at hazardous production facilities: Collection of reports]. Moscow: NTTs «Promyishlennaya bezopasnost», 2005, Vol. 27, iss. 2. pp. 4-34. (in Russian).

STO RD Gazprom 39-1.10-084-2003 Metodicheskie ukazaniya po provedeniyu analiza riska dlya opasnyih proizvodstvennyih ob'ektov gazotransportnyih predpriyatiy OAO «Gazprom» [STO RD Gazprom 39-1.10-084-2003 Guidelines for risk analysis of hazardous production facilities for transport enterprises OJSC «Gazprom»]. (in Russian).

Warnatz, J. Maas, U. and Dibble, R.W. (2001), Combustion. Physical and chemical fundamentals, modeling and simulations, experiments, pollutant formation, Springer, 352 p.

Published

2016-07-05

Issue

Section

Innovative lifecycle technology of housing and civil, industrial and transportation purposes