Regarding calculation of flat concrete frames with rods variable rigidity using deformation method based on time factor

A. N. Bambura, A. U. Bolotov

Abstract


Annotation. Aim. The aim of this work is to develop a method of calculating flat statically indeterminate reinforced concrete frames using deformation method with variable cross-section stiffness, considering time factor through the use of transformable strain diagrams of concrete. Tasks. The implementation of the algorithm for calculating the flat reinforced concrete frames using deformation method based on time factor based on the examples of statically indeterminate reinforced concrete frames with  П shaped and closed-loop to research the effect of short-term and long-term load. Methods. There are many approaches to solve the task. Many of them have their pros and cons. In our case, the most appropriate and logical method is to calculate frame structures by displacement using the deformation method with variable stiffness rods through the use of transformable strain diagrams of concrete. This method gives full freedom in solving the problem of redundancy and the direct calculation of elements section. Such approach helps to solve the problem despite the type of load and / or their combination. The unknown in solving the displacement method are the angles of rotation occurring in all nodes of rigid frame, and linear displacements, the number of which is determined by injection to all rigid nodes of the system, including reference, hinges, which ensures that the mobility of a mechanism is equal to the number of linear displacements. To calculate the frame with a constant stiffness of rods along their length, it is first of all necessary to solve ancillary questions on beam deformation under forced rotation of end sections at an angle equal to unit. The research, executed by the author of the study, taking into account the presence of the frame in the rods of up to 10 separate sections with various atrocities, made possible to determine the value of the above angles of rotation, as a function of the number of sites that are separated by the frame rods, application number, section number and sections rigidity. It was also discovered that the traditional values of individual nodal points of the frame using the displacement method can be expressed by the value of given angles of rotation, taking into account the frame rods breakdown into sections with individual rigidity. After determining the value of all the unknown forces in the frame structure using the displacement method in calculations taking into account the variable rigidity of the rods at a time moment Δt = 1, we move to the calculation of section, when we define new value of the curvature in the estimated sections and rigidity values at intermediate spots of frame rods. In order to calculate the flat frame in nonlinear installment by iterative method with adjusted variable rigidity in sections of crossbar and uprights we are using an algorithm for solving systems of nonlinear equations for concrete estimated sections equilibrium using the deformation method through the use of transformable strain diagrams of concrete. Conclusions. The developed method of calculation of flat frames using deformation method with a variable section rigidity taking into account time factor basing on the use of time convertible deformation diagrams of concrete allowed to establish a functional dependence of the coefficients of the system of canonical equations of displacements method on the determined angles rotation of the nodes of frame rods; to expand algorithm for solving system of nonlinear equations for concrete estimated sections equilibrium using the deformation method to take into account the time factor when calculating flat frames with variable rigidity basing on time convertible deformation diagrams of concrete; to calculate statically undefined frame structures of varying complexity with variable rigidity.

Keywords


calculation of reinforced concrete frames, the time factor, long-term load, the deformation method, concrete stress-strain diagram the variable stiffness.

References


Bambura A.M. Metod «trokh krivizn» dlya rozrakhunku nerozrіznikh zalіzobetonnikh balok / Bambura A.M., Zhdanov O.S. // Mekhanіka і fіzika ruynuvannya budіvelnikh materіalіv ta konstruktsіy: zbіrnik naukovikh prats. - Lvіv, 2007. - Vip. 7.

Bambura A.N. K postroeniyu deformatsionnoy teorii zhelezobetona sterzhnevykh sistem na eksperimentalnoy osnove / Bambura A.N., Gurkovskiy A.B. // Budіvelnі konstruktsії: zb. nauk. prats. - K.: DP NDІBK, 2003. - №59. – S. 121-130.

Babich Є.M. Rozrakhunok zamknutikh zalіzobetonnikh ram z urakhuvannyam trіshchinoutvorennya v betonі / Є.M. Babich, S.V. Fіlіpchuk // Resursoekonomnі konstruktsії, budіvlі ta sporudi: Zbіrnik naukovikh prats. Rіvne: Vidavnitstvo NUVGP, 2008. – Vipusk 16. Ch.2 – S. 28 – 39;

Babich Є.M., Murashko L.A., Іlchuk N.І. Pererozpodіl zusil ta napruzheno-deformovaniy stan zalіzobetonnikh ram pri korotkochasnomu navantazhennі // Resursoekonomnі materіali, konstruktsії, budіvlі ta sporudi: Zbіrnik naukovikh prats. – Rіvne: Vidavnitstvo Natsіonalnogo unіversitetu vodnogo gospodarstva ta prirodokoristuvannya, 2004. Vipusk 11. – S. 123 – 133;

Babich Є.M., Іlchuk N.І. Viznachennya granichnogo navantazhennya na dvosharnіrnі zalіzobetonnі rami na osnovі deformatsіynoї modelі pererіzіv // Stalezalіzobetonnі konstruktsії: Zbіrnik naukovikh statey. – Kriviy Rіg, 2004. – Vipusk 6. – S. 174 – 180;

Barashikov A.Ya. Raschet zhelezobetonnykh konstruktsiy na deystvie dlitelnykh peremennykh nagruzok. – K.: Budіvelnik, 1974.- 144 s.

Golyshev O.B. Zhelezobetonnye konstruktsii. Tom II / Golyshev O.B., Bachinskiy V.Ya., Polishchuk V.P. – K.: Logos, 2003.

Golyshev A.B,. Krivosheev P.I, Bambura A.N.. Teoriya zhelezobetona na eksperimentalnoy osnove. Kiev: Gamma-Print. 2009.

Grebennikov M.N. Raschet mnogoproletnykh nerazreznykh balok. Uravnenie trekh momentov / Grebennikov M.N., Dibir A.G., Pekelnyy N.I. // Ministerstvo obrazovaniya i nauki. Natsionalnyy aerokosmicheskiy universitet im. Zhukovskogo (KhAI), 2010.

Deformatsіyna model ta algoritm viznachennya napruzheno-deformovanogo stanu rozrakhunkovogo pererіzu zalіzobetonnikh elementіv / [Bambura A.M., Gurkіvskiy O.B., Bezbozhna M.S., Dorogova O.V.] // Stroitelstvo, materialovedenie, mashinostroenie: sb. nauchn. trudov. - Vyp. №50. - Dnepropetrovsk: PGASA, 2009.

Spravochnik po soprotivleniyu materialov / Ye. F. Vinokurov, M. K. Balykin, I. A. Golubev i dr. - Mn.: Nauka i tekhnika, 1988. - 464 s.

Umanskiy A.A. Spravochnik proektirovshchika promyshlennykh, zhilykh i obshchestvennykh zdaniy i sooruzheniy. Raschetno-teoreticheskiy / Umanskiy A.A., 1960 g.

Feodosev V. I. Soprotivlenie materialov / V. I. Feodosev. - M.: Nauka, 1986. - 512 s.

Konstantin Meskouris «Baudynamik- Modelle, Methoden, Praxisbeispiele». Ernst&Sohn 1999http://darwin.bth.rwthaachen.de/

Eurocode 2: Worked examples. European concrete platform Available at http://www.europeanconcrete.eu/ 16. Eurocode 2: Design of concrete structures - Part 1-1 : General rules and rules for buildings 2004 Available at: https://law.resource.org/


GOST Style Citations


1. Бамбура А.М. Метод «трьох кривизн» для розрахунку нерозрізних залізобетонних балок / Бамбура А.М., Жданов О.С. // Механіка і фізика руйнування будівельних матеріалів та конструкцій: збірник наукових праць. - Львів, 2007. - Вип. 7.
2. Бамбура А.Н. К построению деформационной теории железобетона стержневых систем на экспериментальной основе / Бамбура А.Н., Гурковский А.Б. // Будівельні конструкції: зб. наук. праць. - К.: ДП НДІБК, 2003. - №59.  – С. 121130.
3. Бабич Є.М. Розрахунок замкнутих залізобетонних рам з урахуванням тріщиноутворення в бетоні / Є.М. Бабич, С.В. Філіпчук // Ресурсоекономні конструкції, будівлі та споруди: Збірник наукових праць. Рівне: Видавництво НУВГП, 2008. – Випуск 16. Ч.2 – С. 28 – 39;
4. Бабич Є.М., Мурашко Л.А., Ільчук Н.І. Перерозподіл зусиль та напружено-деформований стан залізобетонних рам при короткочасному навантаженні // Ресурсоекономні матеріали, конструкції, будівлі та споруди: Збірник наукових праць. – Рівне: Видавництво Національного університету водного господарства та природокористування, 2004. Випуск 11. – С. 123 – 133;
5. Бабич Є.М., Ільчук Н.І. Визначення граничного навантаження на двошарнірні залізобетонні рами на основі деформаційної моделі перерізів // Сталезалізобетонні конструкції: Збірник наукових статей. – Кривий Ріг, 2004. – Випуск 6. – С. 174 – 180;
6. Барашиков А.Я. Расчет железобетонных конструкций на действие длительных переменных нагрузок. – К.: Будівельник, 1974.- 144 с.7. Голышев О.Б. Железобетонные конструкции. Том II / Голышев О.Б., Бачинский В.Я., Полищук В.П. – К.: Логос, 2003. 0 5 10 15 20 0 0.0002 0.0004 0.0006 0.0008 120 270 Діаграма "σс-εс(2)"σ с εс(2) 0 0.0005 0.001 120 270 Діаграма "σс-εс(2)"σ с εс(2)1813 8 30
8. . Голышев А.Б,. Кривошеев П.И, Бамбура А.Н.. Теория железобетона на экспериментальной основе. Киев: ГаммаПринт. 2009.
9. Гребенников М.Н. Расчёт многопролётных неразрезных балок. Уравнение трёх моментов / Гребенников М.Н., Дибир А.Г., Пекельный Н.И. // Министерство образования и науки. Национальный аэрокосмический университет им. Жуковского (ХАИ), 2010.
10. Деформаційна модель та алгоритм визначення напружено-деформованого стану розрахункового перерізу залізобетонних елементів / [Бамбура А.М., Гурківський О.Б., Безбожна М.С., Дорогова О.В.]   // Строительство, материаловедение, машиностроение: сб. научн. трудов. - Вып. №50. - Днепропетровск: ПГАСА, 2009.
11. Справочник по сопротивлению материалов / Е. Ф. Винокуров, М. К. Балыкин, И. А. Голубев и др. - Мн.: Наука и техника, 1988. - 464 с.
12. Уманский А.А. Справочник проектировщика промышленных, жилых и общественных зданий и сооружений. Расчетно-теоретический / Уманский А.А., 1960 г.
13. Феодосьев В. И. Сопротивление материалов / В. И. Феодосьев. - М.: Наука, 1986. - 512 с.
14. Konstantin Meskouris «Baudynamik- Modelle, Methoden, Praxisbeispiele». Ernst&Sohn 1999http://darwin.bth.rwthaachen.de/
15. Eurocode 2: Worked examples. European concrete platform Available at http://www.europeanconcrete.eu/
16. Eurocode 2: Design of concrete structures - Part 1-1 : General rules and rules for buildings 2004 Available at: https://law.resource.org/   


Refbacks

  • There are currently no refbacks.