Control system orienting the drill neuroregulators using neural network controller

Authors

  • G. N. Kovshov Department of Information Measuring Technology and Systems, State Higher Educational Institution " Pridneprovsk State Academy of Civil Engineering and Architecture”, Ukraine
  • A. V. Uzhelovsky Department of Automation and Electrical Engineering, State Higher Educational Institution " Pridneprovsk State Academy of Civil Engineering and Architecture”, Ukraine https://orcid.org/0000-0002-5228-2463

Keywords:

neyrokontroller, electromechanical system, simulation, stability criterion ATS supervisory control

Abstract

The goal - development and research of the neural network control system with feedback on the angular velocity of rotation of the upper and lower part of the drill string. Methodology. To change the direction of drilling has been proposed to use an improved method for the positioning of the drill by rotating the entire drill string using a diverter. Moreover, the column was brought to a special requirement: the inadmissibility of overshoot and also unacceptable reverse. That is, the transition process should be exponential.

Findings.. Developed and researched simulation model of the closed position control orientation of the drill using Neural Network Controller. Simulation results showed that to produce the desired transition process automated control system should be trained supervisory control.

Originality. Advanced computer-aided control management orientation position the drilling tool by taking into account its dynamic parameters and the use of supervisory control to ensure that the process of working out the angle of rotation of the drill string. The resulting simulation model makes it possible to determine the angle of the drill gap from the top of the drill string at-oriented setting it on the bottom of the well and forecast for different depths of its maximum value.

Practical value. Implementation of supervisory control, using Neural Network Controller. Neural Network Controller will provide an opportunity to teach a closed system controlling the position of the drill with the feedback of the angular velocity of rotation of the rotor drilling rig and drill.

Author Biographies

G. N. Kovshov, Department of Information Measuring Technology and Systems, State Higher Educational Institution " Pridneprovsk State Academy of Civil Engineering and Architecture”

Dr. Sc. (Tech.), Prof.

A. V. Uzhelovsky, Department of Automation and Electrical Engineering, State Higher Educational Institution " Pridneprovsk State Academy of Civil Engineering and Architecture”

assistant

References

Terekhov V.A., Efimov D.V., Tyukin I.Yu. Neyrosetevye sistemy upravleniya [Neural network management system], Moscow, Transport, Publ., 2002. 480 p.

Bodyanskiy E.V., Rudenko O.G. Iskusstvennye neyronnye seti: arkhitektury, obuchenie, primeneniya. [Artificial neural networks: architecture, education, application]. Kharkov, Teletekh, Publ., 2004. 264 p.

Klepikov V.B., Polyanskaya I.S. Sintez dvukhmassovoy elektromekhanicheskoy sistemy s otritsatelnym vyazkim treniem pri regulirovanii po polnomu i nepolnomu vektoru sostoyaniya [Synthesis of two-mass electromechanical system with a negative viscous friction in the regulation of full and part state vector], Visnyk Natsionalnogo tehnichnogo universitetu "Harkivskiy politehnichniy institut", Natsionalnyy tekhnichnyy universitet, [Bulletin of the National Technical University Kharkiv Polytechnic Institute], 2001, issue 10, pp. 36-40.

Klepikov V.B., Moiseenko P.L., Tsepkovskiy Yu.A. Sintez gibridnoy neyronnoy seti dlya dvukhmassovoy EMS pri sryivnykh friktsionnykh avtokolebaniyakh [Synthesis of hybrid neural network for two-mass EMC in blasting frictional selfoscillations] / Vestnyk Natsionalnogo tehnicheskogo universiteta": Sbornik nauchnyih trudov "Problemyi avtomatizirovannogo elektroprivoda. [Journal of the National Technical University, the Scientific collections of Labor Problems avtomatyzyrovannoho electric engine. Theory and practice], Kharkov, 2003, issue10, pp. 512-514.

Kuznetsov B. I., Vasilets T. E., Varfolomeev A.A. Razrabotka neyrosetevoy sistemy navedeniya i stabilizatsii vooruzheniya legkobronirovannykh mashin. [Development of neural network guidance and stabilization of the arms lightly armored vehicles.] / Sbornik nauchnyih trudov Kharkovskogo universiteta Vozdushnih sil. Elektrotekhnika i elektromekhanika. [Collections of the Scientific Labor of Kharkiv Air Force University.], 2008. issue 2, pp. 31-34.

Kuznetsov B.I., Vasylets T.Ye. Varfolomeev A.A. Pobudova neiromerezhevoi systemy kеruvannia neliniinoiu elektromekhanichnoiu systemoiu z vykorystanniam neirokontrolera z peredbachenniam. [Construction of neural network control system of nonlinear electromechanical systems using predictive neurocontroller] / Visnyk Kharkovskogo Politehnicheskogo universiteta. [Bulletin of the Kharkiv Polytechnic University], Elektroinform. – : "Ekoinform" , 2008,issue 1, pp. 6-10

Kuznetsov B.I., Vasilets T.E., Kolomiets V.V., Mashnev A.E., Varfolomeev A.A. Sintez i issledovanie neyrosetevoy sistemy upravleniya nelineynym dinamicheskim obektom. [Synthesis and study of the neural network control system of nonlinear dynamic object], Mashinostroenie i tekhnosfera XXI veka: Sbornik trudov Donetskogo natcianalnogo univerciteta, [Labor collections of the National Technical University of Donetsk], 2008, issue 2, pp. 165-169.

Kovshov G.N., Uzhelovskiy A.V. Razrabotka i issledovanie imitatsionnoy modeli upravleniya elektroprivodom rotora burovogo stanka, uchityvayushchaya vliyanie dinamicheskikh parametrov burilnoy kolonny pri prostranstvennom orientirovanii burovogo snaryada v skvazhine. [Development and research of simulation model of motor control rotor drilling rig, which takes into account the effect of the dynamic parameters of the drill string in the spatial orientation of the drill in the hole] / Zbirnyk naukovykh prats Natsionalnoho hirnychoho universytetu. – Dnipropetrovsk: Natsionalnyi hirnychyi universytet, [Proceedings of the National Mining University], 2014, issue 44, pp. 25-30.

Kuznetsov B.I. Sistema upravleniya nelineynyimdinamicheskim ob'ektom s neyroregulyatorom. [The control system of nonlinear dynamic object with Nero regulator] Elektrotekhnika i ElektromehanIka - Electrical engineering and Electromechanics, 2009, issue 2, pp. 39-42.

Omatu, S. Neyroupravlenie i ego prilozheniya. [Neurocontrol and applications first, from English]. Moscow, Radiotekhnika Publ., 2000. 272 p.

Riznyk A. M. Dynamichni rekurentni neironni merezhi/ [Dynamic Recurrent Neural Networks], Matematychni Mashyny i Systemy. 2009, issue 2, pp. 3-26.

Styuart R. Iskusstvennyy intellekt: sovremennyy podkhod, [Artificial Intelligence: Modern approach]. Moscow, Publishing house "Williams", 2006. 548 р.

Issue

Section

Computer systems and information technologies in education, science and management