Development of iron-based binder composition for macroheterogeneous composites

Authors

  • V. F. Bashev Department of Experimental Physics and Physics of Metals, The Oles’ Gonchar Dnipropetrovsk National University, 72, Gagarin Ave., Dnipropetrovsk 49050, Ukraine, Ukraine
  • O. V. Sukhova Department of Experimental Physics and Physics of Metals, The Oles’ Gonchar Dnipropetrovsk National University, 72, Gagarin Ave., Dnipropetrovsk 49050, Ukraine, Ukraine
  • Yu. V Syrovatko Department of Experimental Physics and Physics of Metals, The Oles’ Gonchar Dnipropetrovsk National University, 72, Gagarin Ave., Dnipropetrovsk 49050, Ukraine, Ukraine

Keywords:

macroheterogeneous composite material, furnace infiltration, wetting and dissolution, interface structure formation, statistical analysis, phase entropy.

Abstract

Application of composite coatings allows solving the problem of prolongation  of service life of quicklyworn  equipment  parts. The development  of  iron-based  binder  composition  for  composites  reinforced  with  tungsten  carbides is imperative to enhance wear resistance of the coatings. Methodology. The macroheterogeneous composites reinforced with tungsten carbides were produced by infiltration at 1453 К during 30 minutes without applying pressure. The Fe–3%C–1,8%B–1%P and Fe–3%C–1,8%B–1%P–0,5%Мо alloys were used as metal binders. The structure of the composites was investigated by metallographic, Xray,  and energy  dispersive  X-ray analyses.  To control structural and phase composition of contact interaction zones appearing

between  the  filler  and  the  binder  during  infiltration  an  original  method  of  statistical  structural  analysis  was  applied. Findings. Alloying the Fe–C–B–P binder with molybdenum is established to allow decreasing the intensity of contact interaction processes between the filler and the molten binder during infiltration. As the result, the undesirable brittle Fe3W3C and austenite phases do not appear in the structure of contact interaction zones. It is shown that the accuracy of quantitative characteristics determination can be essentially improved thanks to application of the suggested statistical analysis of microphotographies. Total entropies of the contact interaction zones phases are calculated using probability density curves showing the hitting of the certain interval by the intensities of the  microscope  light  reflected  from the  polished  section. Originality. The regularities of the structure formation of the contact interaction zones appearing between the W–C filler and the solidified Fe–C–B–P or Fe–C–B–P–Мо binders were investigated. To identify and determine relative phase content the original method of statistical structural analysis was applied. Total entropies of the contact interaction zones phases were calculated which allowed explaining the decrease in dissolution rate of the filler in the molten Fe–C–B–P–Мо  binder  during  infiltration.  Practical  value.  The  iron-based  binder  composition  is  developed  to  infiltrate macroheterogeneous  composites  reinforced  with  tungsten  carbides. The application of the  suggested binder allows increasing the wear resistance of the composites due to contact interaction zones being free from the brittle phases. The developed binder can be recommended to obtain composite coatings to protect quickly-worn parts of metallurgical and machine-building equipment working in abrasive and gas-abrasive media.

Author Biographies

V. F. Bashev, Department of Experimental Physics and Physics of Metals, The Oles’ Gonchar Dnipropetrovsk National University, 72, Gagarin Ave., Dnipropetrovsk 49050, Ukraine

Dr. Sc. (Physics&Math.), Prof.

O. V. Sukhova, Department of Experimental Physics and Physics of Metals, The Oles’ Gonchar Dnipropetrovsk National University, 72, Gagarin Ave., Dnipropetrovsk 49050, Ukraine

Dr. Sc. (Tech.), Prof.

References

Spiridonova I.M., Panasyuk A.D., Sukhovaya E.V., Umanskiy A.P. Stabiljnostj kompozitsionnykh materialov [Composites Stability]. Dnepropetrovsk, Svidler Publ., 2011. 244 p.

Samsonov G. V., Vytryanyuk V. K., Chaplygin F. I. Karbidy voljframa [Tungsten Carbides]. K.: Naukova dumka, 1974. 175 p.

Sukhova O. V. Microstructure and properties of Fe–B–C/W–C interfaces in metal matrix composites. Visnyk DU. Fizyka. Radioelektronika – Bulletin of DU. Physics. Radioelectronics, 2002, no. 9, pp. 15–18.

Sukhovaya E. V. Strukturnyi podkhod k sozdaniyu iznosostoykikh kompozitsionnykh materialov [Structural approach to development of wear-resistant composites]. Sverkhtverdye materially – Superhard Materials, 2013, no. 5, pp. 29–38.

Sukhova O. V. High performance composites. Visnyk DU. Fizyka. Radioelektronika – Bulletin of DU. Physics. Radioelectronics, 2012, no. 19, pp. 78–81.

Sukhova О. V. Vplyv mekhanizmiv strukturoutvorennya granutsj podily v kompozytsiynykh materialakh na yikh vlastyvosti [Influence of structure formation mechanisms of composites interfaces on their properties]. Metallofizika i noveyshiye tekhnologii – Physics of Metals and Advanced Technologies, 2009, vol. 31, no. 7, pp. 1001–1012.

Spyrydonova I. M., Sukhova O. V., Bezrukavaya O. G. Fazovi peretvorennya v kompozytsiynykh materialakh iz zaliznymy zv’yazkamy, shcho mistyatj bor ta vugletsj [Phase transformations of composites with iron binders containing boron and carbon]. Dopovidi NAN Ukrayiny – Reports of National Academy of Science of Ukraine, 2002, no. 10, pp. 93–97.

Sukhovaya E. V., Syrovatko Yu. V., Syrovatko V. A. Protsessy kontaktnogo vzaimodeyctviya v kompozitsionnykh materialakh z mikrokristallichnym napolnitelem [Contact interaction processes of composites reinforced with microcrystal filler]. Fizicheskaya inzheneriya poverkhnosti – Physical surface engineering, 2011, vol. 9, no. 3, pp. 269–273.

Golyandyna N. E. Metod “Gysenitsa”-SSA: analiz vremennykh ryadov [“Gysenitsa”-SSA Method: Time Series Analysis]. Sankt-Peterburg: SPbGU, 2004. 76 p.

Sukhovaya E. V., Syrovatko Yu. V. Zakonomirnosti strukturoobrazovaniya mezhfaznykh granits razdela v kompozitsionnykhmaterialakh [Regularities in structure formation of composites interfaces]. Visnyk Skhidnoukrainsjkogo natsionaljnogo universitetu im. V.Dalya – Bulletin of The V. Dalj East Ukrainian National University, 2011, no. 8(62), p. 2, pp. 86-93.

Bashev V.F., Sukhovaya E.V., Syrovatko Yu.V. Statisticheskiy analiz mikrostruktury kompozitsionnykh materialov // Building, materials sciences, mechanic engineering: Collection of scientific papers Issue № 64 – Dnipropetrovs’k, PSАES, 2012. – p. 53–57.

Sukhovaya E. V., Syrovatko Yu. V. Osobennosti strukturoobrazovaniya kompozitsionnykh materialov rastvorno-diffuzionnogotipa [Peculiarities in structure formation of the composites of diffusion-dissolution type]. Metallofizika i noveyshiye tekhnologii – Physics of Metals and Advanced Technologies, 2012, vol. 33, pp. 371-378.

Sukhovaya E. V., Syrovatko Yu. V. Statystychyy analiz napruzhenj u strukturi prosochennykh kompozitsiynykh materialiv [Statistic analysis of stresses of the infiltrated composites structure]. Visnyk DU. Raketno-kosmichna tekhnika – Bulletin of Du. Rocket-cosmos engineering, 2012, vol. 20(4), no. 16(2), pp. 258–263.

Sukhovaya E. V., Syrovatko Yu. V. Upravlenie strukturoy I svoystvami iznosostoykikh kompozitsionnykh materialov [Control over structure and properties of wear-resistant composites]. Adgeziya rasplavov I payka materialov – Melts Adhesion and Materials Soldering, 2012, no. 45, pp. 86–93.

Landau L.D. Statisticheskaya fizika [Statistical Physics]. Moscow, Science Publ., 1976. 583 p.

Published

2016-03-22

Issue

Section

Proceedings in memory of Starodubov