The researching of physical-mechanical properties of intermetallic catalysts obtained in shs conditions

Authors

  • B. P. Sereda Department of Ferrous Metallurgy, Zaporozhye State Engineering Academy, Lenina ave., 226, 69006, Zaporozhe, Ukraine, tel. +38 (063) 5525231, Ukraine https://orcid.org/0000-0001-6100-5874
  • Y. A. Belokon Department of Ferrous Metallurgy, Zaporozhye State Engineering Academy, Lenina ave., 226, 69006, Zaporozhe, Ukraine, tel. +38 (096) 1129554, Ukraine https://orcid.org/0000-0002-9327-5219
  • K. V. Belokon Department of Applied Ecology, Zaporozhye State Engineering Academy, Lenina ave., 226, 69006, Zaporozhe, Ukraine, tel. +38 (097) 7357141, Ukraine https://orcid.org/0000-0003-2000-4052
  • D. V. Sereda Department of Ferrous Metallurgy, Zaporozhye State Engineering Academy, Lenina ave., 226, 69006, Zaporozhe, Ukraine, tel. +38 (063) 2260817, Ukraine https://orcid.org/0000-0003-4353-1365

Keywords:

SHS, intermetallic, catalysts, porosity, durability, thermal stability

Abstract

Abstract.  Purpose. For nickel aluminides along with traditional methods of casting and powder metallurgy, recently began to use the technology self-propagating high-temperature synthesis (SHS). You must install the regularities of formation porosity and strength intermetallic catalysts when changing the SHS process and the degree of doping. Methodology. As starting components used pure  powders  of  nickel,  aluminum,  cobalt,  copper,  and  manganese  oxide.  Dispersible  powders  was  100-150  m.  Scheme  batch cooking  involved  dosing,  mixing,  mold  filling, SHS compaction  and  heat  treatment.  The  mechanical  strength  of samples  was determined  via  UG-20  machine. Compression testing  was performed according to GOST 25.503-97.  Thermal  analysis of the test sample  was  performed  on  the  brand Derivatograph Q1050.  The  microstructure  of  the  obtained  catalysts were  tested  for  light microscope  «Neophot-21» and  a  scanning  electron  microscope «SEM-100». Findings. Analysis  of  the  results  of  physical  and mechanical  properties of intermetallic catalysts showed that they  differ depending on the mixture  composition and process  mode processing.  The  difference  in  the  physical  and  mechanical  properties  of  the  catalyst  is  due  to  differences  in  the  structure, phase composition, the porosity and pore size. The introducing additives porosity manganese catalyst is increased by increasing the volume of large pores and the structure with small capillaries not change due to the localization of manganese oxide in the catalyst pores. However, with the introduction of additives manganese sharply reduced mechanical strength blanks which may be increased if the Ni-Co-Mn catalyst additionally prolegirovat copper. An important advantage of SHS mode, is that the strength of the catalyst is 1,5 times higher than that of the sintered materials at the same porosity. High process temperatures and low content of impurities at the grain boundary (due to self-cleaning) lead to the formation of strong bonds between the grains in the polycrystal. The average value for all of the specific surface of the catalyst is tested samples 112 m2/g. Analysis of the initial sample derivatograms Ni-Co-Mn-Cu gave weight gain of the sample at temperatures ranging from 200-300oС 2% by weight. Originality. New scientific evidence on the effect of mode of SHS process and the degree of doping on the porosity and strength of the intermetallic catalysts. The parameters of the thermal stability ofintermetallic catalysts. Practical value. The parameters of SHS pressing and doping levels to increase the porosity and plasticity of intermetallic catalysts.

Author Biographies

B. P. Sereda, Department of Ferrous Metallurgy, Zaporozhye State Engineering Academy, Lenina ave., 226, 69006, Zaporozhe, Ukraine, tel. +38 (063) 5525231

Dr. Sc. (Tech.), Prof

Y. A. Belokon, Department of Ferrous Metallurgy, Zaporozhye State Engineering Academy, Lenina ave., 226, 69006, Zaporozhe, Ukraine, tel. +38 (096) 1129554

Cand. Sc. (Tech.), Doctoral student

K. V. Belokon, Department of Applied Ecology, Zaporozhye State Engineering Academy, Lenina ave., 226, 69006, Zaporozhe, Ukraine, tel. +38 (097) 7357141

Cand. Sc. (Tech.), Associate professor

D. V. Sereda, Department of Ferrous Metallurgy, Zaporozhye State Engineering Academy, Lenina ave., 226, 69006, Zaporozhe, Ukraine, tel. +38 (063) 2260817

Graduate student

References

Колесников М.И. Катализ и производство катализаторов / М.И. Колесников. – М.: Техника, 2004. – 400 с.

Kolesnikov M. I. Kataliz i proizvodstvo katalizatorov / M.I. Kolesnikov. – M.: Tekhnika, 2004. – 400 p. http://www.twirpx.com/file/565961/

Григорян Э. А., Мержанов А. Г. Катализаторы ХХI века / Э. А. Григорян, А. Г. Мержанов // Наука производству. – 1998. – №3 (5). – С. 30-41.

Grigoryan E. A., Merzhanov A. G. Katalizatory ХХI / E. A.Grigoryan, A. G. Merzhanov // Nauka proizvodstvu. – 1998. –№3 (5). – P. 30-41. http://www.ism.ac.ru/news/journals/index.htm

Токабе К. Катализаторы и каталитические процессы / К. Токабе. – М.: Техника, 1993. – 350 c.

Tokabe K. Katalizatory i kataliticheskie protsessy / K. Tokabe. – M.: Tekhnika, 1993. – 350 p. http://www.twirpx.com/file/286474/

Попова Н. М. Катализаторы очистки газовых выбросов промышленных производств/ Н. М. Попова. – М.: Химия, 1991. – 176 с.

Popova N. M. Katalizatory ochistki gazovykh vybrosov promyshlennykh proizvodstv/ N.M. Popova. – M.: Khimiya, 1991. – 176 p. http://books.google.com.ua/books/about/Катализаторы_очистки.html?id=ZeFdAAAACAAJ&redir_esc=y

Мержанов А. Г. Процессы горения и синтеза материалов / А. Г. Мержанов. – Черноголовка: ИСМАН, 1998. – 512 с.

Merzhanov A. G. Protsessy goreniya i sinteza materialov / A. G. Merzhanov. – Chernogolovka: ISMAN, 1998. – 512 p. http://www.ism.ac.ru/n_internal/archive

Амосов А.П. Порошковая технология самораспространяющегося высокотемпературного синтеза материалов / А.П. Амосов, И.П. Боровинская, А.Г. Мержанов. – М.: Машиностроение-1, 2007. – 567 с.

Amosov A.P. Poroshkovaya tekhnologiyasamorasprostranyayushchegosya vysokotemperaturnogo sintezamaterialov / A. P. Amosov, I. P. Borovinskaya, A. G. Merzhanov. – M.: Mashinostroenie-1, 2007. – 567 p. http://www.twirpx.com/file/550726/

Левашов Е.А. Физико-химические и технологические основы самораспространяющегося высокотемпературного синтеза / Е.А. Левашов, А.С. Рогачев, В.И. Юхвид, И.П. Боровинская. – М.: БИНОМ, 1999. – 176 с.

Levashov E.A. Fiziko-khimicheskie i tekhnologicheskie osnovysamorasprostranyayushchegosya vysokotemperaturnogo sinteza / E.A. Levashov, A.S. Rogachev, V.I. Yukhvid, I.P. Borovinskaya. – M.: BINOM, 1999. – 176 p. http://www.booka.ru/books/63540#about

Середа Б.П. Нові матеріали в металургії [навч. посіб. для студ. вищ. навч. закл.] / Б.П.Середа. – Запоріжжя: ЗДІА, 2009. – 392 с.

Sereda B.P. Novі materіali v metalurgії [navch. posіb. dlyastud. vishch. navch. zakl.] / B.P.Sereda. – Zaporіzhzhya: ZDІA, 2009. – 392 p. http://www.library.zgia.zp.ua/ukr/index.php?text=Polnotext&bookid=36003

Середа Б.П. Влияние состава никель-алюминиевого сплава с добавками Co, Mn и Cu на структуру и удельную активность катализатора на их основе / Б.П. Середа, Г.Б. Кожемякин, В.Г. Рыжков [и др.] // Строительство, материаловедение, машиностроение: сб. науч. трудов. – Дн-вск: ПГАСА, 2009. – Вып. 48. – C. 101-104.

Sereda B.P. Vliyanie sostava nikel'-alyuminievogo splava s dobavkami Co, Mn i Cu na strukturu i udel'nuyu aktivnost' katalizatora na ikh osnove / B.P. Sereda, G.B. Kozhemyakin, V.G. Ryzhkov [i dr.] // Stroitel'stvo, materialovedenie, mashinostroenie: sb. nauch. trudov. – Dn-vsk: PGASA, 2009. –Vyp. 48. – P. 101-104. http://pgasa.dp.ua/labconcrete/publicat.html

Raney-nickel catalysts produced by mechanical alloying / B. Zeifert, J.S. Blasquez, J.G.C. Moreno, H.A. Calderon // Rev.Adv.Mater.Sci. – 2008. – №18. – Р. 632-638. http://www.ipme.ru/e-journals/RAMS/no_71808/zeifert.pdf

The Researching and Modeling of Physical-Chemical Properties of Ni-base Alloys in SHS Conditions / B. Sereda, Y. Belokon’, A. Zherebtsov, D. Sereda // Materials Science and Technology. – Pittsburgh: MS&T, 2012. – P. 494-498. http://www.scopus.com/authid/detail.url?authorId=26428911900

The Retrieving of Heat-resistant Alloys on IntermetallicBase for Details of Gas Turbine Engine Hot Track in SHS Conditions / B. Sereda, Y. Belokon’, A. Zherebtsov, K. Belokon’ // Materials Science and Technology. – Houston: MS&T, 2010. – P. 2097-2102. http://www.scopus.com/authid/detail.url?authorId=26428911900

Аркатова Л. А. Углекислотная конверсия метана на алюминидах никеля / Л.А. Аркатова, Т.С. Харламова, Л.В. Галактионова [и др.] // Журнал физической химии. – 2006. – Т.80. – № 8. – С. 1403-1406.

Arkatova L. A. Uglekislotnaya konversiya metana na alyuminidakh nikelya / L.A. Arkatova, T.S. Kharlamova, L.V. Galaktionova [i dr.] // Zhurnal fizicheskoy khimii. – 2006. –T.80. – № 8. – P. 1403-1406. http://ntb.misis.ru:591/OpacUnicode/index.php?url=/auteurs/view/id:111777/source:default

Published

2015-03-24

Issue

Section

Proceedings in memory of Starodubov