Characteristics of macrolocalization plastic deformation under uniaxial tension steel objects and their resistance to ductile fracture

Yu. P. Gul, A. V. Ivchenko, P. V. Kondratenko, V. S. Chmeleva, G. I. Perchun

Abstract


 

Purpose. On the basis of the comparative analysis of theoretical prerequisites and experimental results to justify the use  of  uniform  deformation  and  strain  hardening  characteristics  on  Consider-Hart  as  parameters  of  resistance  of  steel  viscous destruction. Methodology. Analytical  study  of  modern  concepts  about  the  conditions  of  microlocalization  plastic  deformation  in combination with experimental studies on the behaviour of steel under load objects from low-carbon steel in soft and hardened by cold deformation and strain ageing of structural conditions using including large samples of experimental data and their statistical treatment. Findings. Obtained  depending  on  the  structural  state  of  the  four  main  types  of  charts  of  deformation  and  fracture characterizing in including the resistance of viscous destruction shown a beneficial effect on the level of intensity of strain hardening, and confirmed a statistically favorable impact on the value of uniform deformation in the framework of the canonical equations of Consider-Hart. Offered: as explanation for the observed quantitative deviations in the experiment from the above equations, and use them as estimates of the magnitude of the dispersion property of micro volumes. It justifies the use of the uniform deformation value indicating the deviation of this value from the values of the coefficient  of strain  hardening as a measure of resistance of viscous destruction. Originality. First proposed and justified theoretically characteristic of the viscous resistance to fracture of steel in the form of the value of uniform deformation taking into account  the deviation values determined  from experiment  the values of the coefficient of strain hardening as a measure of dispersion in a distribution of speed values of strain hardening in micro load of the object. It was shown that at a sufficiently large volume of sample and the correct determination of the values of uniform strain ер, the coefficient α in the equation ер = αn (Consider-Hart), where n is the strain hardening coefficient, close to unity. Practical  value.Proposed  to  include  in  the  list  of  properties  defined  by  acceptance  tests  cold-formed  products,  especially  susceptible  to  lowtemperature (to 100 ° C) deformation aging, a new characteristic of the viscous resistance destruction: ер indicating the deviation (n-ер). Proposed mode of aging that increase the value of ер and reduce the value of (n-ер).


Keywords


macrolocalization plastic deformation; uniaxial tensile tests; strain hardening; cold deformation; aging; strain hardening coefficient; the equation of Consider-Hart; the resistance of the viscous destruction.

References


Babich V. K., Gul Yu. P., Dolzhenkov I. E. Deformatsionnoe starenie stali [Strain aging steel] //M.: Metallurgiya, 1972 – 320 p.(in Russian).

Guljaev A.P. Plastycheskaja deformacyja zapredelom prochnosty [Plastic deformation beyond the ultimate strength]// Metal Science and Heat Treatment. - 1996. - №12. – pp.20-22. (in Russian).

GulYu.P.,Rjabchyj M.M., Rjabchyj V.V., Kamynskaja Y.F. Effect uprochnenyja y lokalyzacyy deformacyy pry deformacyonnom starenyy tekhnycheskogo zheleza [The effects of hardening and localization of deformation during strain aging of iron technical]// Problems of strength. – 1982. - №10. – pp. 82 – 85.(in Russian).

GulYu.P.,Chmeleva V.S. Vakansyonnoe leghyrovanye metallov [Vacancy alloying metals] // Metal Science andHeat Treatment. – 2001. - №1. – pp. 13 – 27.(in Russian).

Deformacyonnoe uprochnenye y razrushenye polykrystallycheskykh metallov [Strain hardening and fracture of polycrystalline metals] / Podred.. akad.. V.Y. Trefylova – Kiev.: NaukovaDumka, 1987. – 246p.(in Russian).

Kolbasnikov N. G., Mets Y. A,, Trifonova I. A., Jurukova N. In., Nikolaus V. A. Analyz ustojchyvosty plastycheskoj deformacyy metallov [The stability analysis of plastic deformation of metals]//Metals. – 1997. –№5. – pp. 72-79.(in Russian).

KottrellA.Kh. Dyslokacyy i plastycheskoe techenye v krystallakh [Dislocation and plastic flow in crystal]. – Moscow: Metallurgizdat, 1958. – 268p. (in Russian).

Krishtal M. M. Neustojchyvostji mezoskopycheskaja neodnorodnostj plastycheskoj deformacyy (analytycheskyj obzor). Chastj II Teoretycheskye predstavlenyja o mekhanyzmakh neustojchyvosty plastycheskoj deformacyy [Instability and mesoscopic inhomogeneity of plastic deformation (analytical review). Part II Theoretical views on mechanisms of plastic deformation instability] // Physical mesomechanics. - Vol. 7 – 2004. - №5. – pp. 31 – 45.(in Russian).

Mak Lin D. Mekhanycheskye svojstva metallov [The mechanical properties of metals]. – Moscow: Metallurgy, 1965. – 432p.(in Russian).

MoriwakiM.,ItoK., InuiH., YamaguchiM. Plastic deformation of single crystals NbSi2 wich C 40 structure// Mat. Sci. Eng. A. – Struct. – 1997. – V. 240 – pp. 69-74.

Nikulin S. A. Dva varyanta potery ustojchyvosty techenyja pry rastjazhenyy i plastychnostj splavov[Two versions of the loss of stability of the flow and tensile ductility of the alloys] // FММ. – 1996. – Vol. 81. – №. 3 – pp. 142-158.(in Russian).

S. A. Barannikova, Y. Ivanov, D. Kosinov, S. Konovalov, О. Stolboushkina, V. Gromov, Plastic Deformation Localization of Low Carbon Steel: Hydrogen Effect // Advanced Materials Research. – 2014. - Vol. 1013. - pp. 77-83.

Hart E.W. Theory of the tensile test. – Acta met. – 1967. – V. 15 – №2. – pp. 351 – 355.

H.S. Ho, M. Risbet, X. Feaugas, G. Moulin The effect of grain size on the localization of plastic deformation in shear bands // Scripta Materialia. - 2011. - Vol. 65. – pp. 998-1001.


GOST Style Citations


1. Бабич В. К., Гуль Ю. П., Долженков И. Е. Деформационное старение стали //М.: Металлургия, 1972.- 320с.

2. Гуляев А.П. Пластическаядеформация за пределомпрочности// МиТОМ. - 1996. - №12. – С.20-22. 3. Гуль Ю.П., Рябчий М.М., Рябчий В.В., Каминская И.Ф. Эффекты упрочнения и локализации деформации при деформационном старении технического железа // Проблемы прочности. – 1982. - №10. – с. 82 – 85.

4. Гуль Ю.П., Чмелева В.С. Вакансионное легирование металлов // Металознавство та термічна обробка металів. – 2001. - №1. – с. 13 – 27.

5. Деформационноеупрочнение и разрушениеполикристаллическихметаллов / Под ред.. акад.. В.И. Трефилова – К.: Наукова думка, 1987. – 246с.

6. Колбасников Н.Г., Метс Ю.А,, Трифонова И.А., Журакова Н.В., Николаюк А.В. Анализустойчивостипластическойдеформацииметаллов //Металлы. – 1997. –№5. – С. 72-79.

7. Коттрелл А.Х. Дислокации и пластическое течение в кристаллах. – М.: Металлургиздат , 1958. – 268с.

8. Криштал М.М. Неустойчивость и мезоскопическая неоднородность пластической деформации (аналитический обзор). Часть ІІ Теоретические представления о механизмах неустойчивости пластической деформации // Физическая мезомеханика. Т. 7 – 2004. - №5. – с. 31 – 45.

9. Мак Лин Д. Механические свойства металлов. – М.: Металлургия, 1965. – 432с.

10. MoriwakiM.,ItoK., InuiH., YamaguchiM. Plastic deformation of single crystals NbSi2 wich C 40 structure// Mat. Sci. Eng. A. – Struct. – 1997. – V. 240 – pp. 69-74.

11. Никулин С.А. Два варианта потери устойчивости течения при растяжении и пластичность сплавов // ФММ. – 1996. – Т. 81. – вып. 3 – С. 142-158.

12. S. A. Barannikova, Y. Ivanov, D. Kosinov, S. Konovalov, О. Stolboushkina, V. Gromov, Plastic Deformation Localization of Low Carbon Steel: Hydrogen Effect // Advanced Materials Research. – 2014. - Vol. 1013. - pp. 77-83.

13. Hart E.W. Theory of the tensile test. – Acta met. – 1967. – V. 15 – №2. – pp. 351 – 355.

14. H.S. Ho, M. Risbet, X. Feaugas, G. Moulin The effect of grain size on the localization of plastic deformation in shear bands // ScriptaMaterialia. - 2011. - Vol. 65. – pp. 998-1001.



Refbacks

  • There are currently no refbacks.