High-entropy alloys al-co-cr-fe-mn-ni-si-v in as-cast and splat-quenched states
Keywords:
high-entropy alloy, splat-quenching, phase composition, structure, microhardnes.Abstract
This work is dedicated to establish the effects of the composition and the melt cooling rate on microhardness, phase composition and parameters of the fine structure of high-entropy alloys (HEA) of Al-Co-Cr-Fe-Mn-Ni-Si-V system in the ascast and rapid quenched state. Metodology. As-cast alloy samples were obtained using a copper mold (cooling rate ~ 10 2 K/s). Quenching from a liquid state was carried out by a known technique of splat-quenching (SQ). Cooling rate estimated by foil thickness was ~ 10 6K/s. The X-ray diffraction analysis was carried out with use of the DRON-2.0 diffractometer. Microhardness was measured on the PMT-3 microhardnessmeter. Selection of components of the studied HEAs was carried out on the basis of the criteria adopted in the literature for the HEA composition based on calculation of the entropy and enthalpy of mixing, valence electron concentrations as well as the difference between the atomic radii of the components. Findings. It was found that the as-cast alloys show a multiphase BCC+B2 structure, while the SQ alloys - fully disordered BCC crystal structure only. The value of lattice parameters of the investigated alloys suggests that the solid solutions are form on the base of Cr lattice, in view of its higher melting temperature. All of the as-cast alloys display a typical cast dendritic structure with various configurations and volumes of the interdendritic space. The positive influence of microstrains level and dislocation density on the microhardness values of splatquenched Al-Co-Cr-Fe-Mn-Ni-Si-V alloys has been established. Improved mechanical characteristics are ensured by the strong distortion of the crystal lattice due to the differences in atomic radii of the elements. It was found that the splat-quenching HEAs of Al-Co-Cr-Fe-Mn-Ni-Si-V system are characterized by higher values of microhardness than as-cast alloys. Originality. At present work were first obtained and studied HEAs of Al-Co-Cr-Fe-Mn-Ni-Si-V system in the as-cast and splat-quenched state. Practical value. The HEAs possess many attractive properties, such as high hardness, outstanding wear resistance, irradiation resistance, excellent high-temperature strength, good thermal stability and corrosion resistance. The study of thin films obtained by splatquenching from the liquid state is also of great practical interest, since one of the promising applications of HEAs are thin film coatings.
References
Bashev V.F. and Kushnerov O.I. Structure and properties of high-entropy CoCrCuFeNiSnx alloys // The Physics of Metals and Metallography. 2014, vol. 115, no. 7, pp. 692–696.
Dong Y., Lu Y., Jiang L., Wang T. and Li T. Effects of electro-negativity on the stability of topologically close-packed phase in high entropy alloys // Intermetallics. 2014, vol. 52, pp. 105–109.
Dong Y., Zhou K., Lu Y., Gao X., Wang T. and Li T. Effect of vanadium addition on the microstructure and properties of AlCoCrFeNi high entropy alloy // Materials and Design. 2014, vol. 57, pp. 67–72.
Guo S., Liu C.T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase // Progress in Natural Science: Materials International. 2011, vol. 21, no. 6, pp. 433–446.
Guo S., Ng C., Lu J. and Liu C.T. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys // Journal of Applied Physics. 2011, vol. 109, no. 10, pp. 1-5.
He J.Y., Wang H., Huang H.L., Xu X.D., Chen M.W., Wu Y., Liu X.J., Nieh T.G., An K. and Lu Z.P. A precipitation-hardened high-entropy alloy with outstanding tensile properties // Acta Materialia. 2016, vol. 102, pp. 187–196.
Körmann F., Ma D., Belyea D.D., Lucas M.S., Miller C.W., Grabowski B. and Sluiter M.H.F. “Treasure maps” for magnetic high-entropy-alloys from theory and experiment // Applied Physics Letters. 2015, vol.107, no. 14, p. 142404.
Lu Z.P., Wang H., Chen M.W., Baker I., Yeh J.W., Liu C.T. and Nieh T.G. An assessment on the future development of high-entropy alloys: Summary from a recent workshop // Intermetallics. 2015, vol. 66, pp. 67–76.
Miracle D., Miller J., Senkov O., Woodward C., Uchic M. and Tiley J. Exploration and Development of High Entropy Alloys for Structural Applications // Entropy. 2014, vol. 16, no.1, pp. 494–525.
Murty B.S., Yeh J.-W. and Ranganathan S. High-Entropy Alloys. Oxford: Butterworth-Heinemann, 2014, 219 p.
Singh A.K., Kumar N., Dwivedi A. and Subramaniam A. A geometrical parameter for the formation of disordered solid solutions in multi-component alloys // Intermetallics. 2014, vol. 53, pp. 112–119.
Shafeie S., Guo S., Hu Q., Fahlquist H., Erhart P. and Palmqvist A. High-entropy alloys as high-temperature thermoelectric materials // Journal of Applied Physics. 2015, vol. 118, no. 18, p. 184905.
Stepanov N.D., Shaysultanov D.G., Salishchev G. A. and Senkov O.N. Mechanical Behavior and Microstructure Evolution during Superplastic Deformation of the Fine-Grained AlCoCrCuFeNi High Entropy Alloy // Materials Science Forum. 2016, vol. 838-839, pp. 302–307.
Stepanov N.D., Shaysultanov D.G., Salishchev G.A. and Tikhonovsky M.A. Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy // Materials Letters. 2015, vol. 142, pp. 153–155.
Takeuchi A. and Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element // Materials Transactions. 2005, vol. 46, no. 12, pp. 2817–2829.
Tsai M.-H. and Yeh J.-W. High-Entropy Alloys: A Critical Review // Materials Research Letters. 2014, vol 2, no. 3, pp. 107–123.
Yeh J.-W. Physical Metallurgy of High-Entropy Alloys // JOM. 2015, vol. 67, no. 10, pp. 2254–2261.
Yu P.F., Zhang L.J., Cheng H., Zhang H., Ma M.Z., Li Y.C., Li G., Liaw P.K. and Liu R.P. The high-entropy alloys with high hardness and soft magnetic property prepared by mechanical alloying and high-pressure sintering // Intermetallics. 2016, vol. 70, pp. 82–87.
Zaddach A.J., Niu C., Oni A.A., Fan M., LeBeau J.M., Irving D.L. and Koch C.C. Structure and magnetic properties of a multi-principal element Ni–Fe–Cr–Co–Zn–Mn alloy // Intermetallics. 2016, vol. 68. P 107–112.
Zhang Y., Yang X. and Liaw P.K. Alloy Design and Properties Optimization of High-Entropy Alloys // JOM. 2012, vol. 64, no. 7. pp. 830–838.
Zhang Y., Zhou Y.J., Lin J.P., Chen G.L. and Liaw P.K. Solid-Solution Phase Formation Rules for Multicomponent Alloys // Advanced Engineering Materials. 2008, vol. 10, no. 6, pp. 534–538.
Zhang Y., Zuo T.T., Tang Z., Gao M.C., Dahmen K.A., Liaw P.K. and Lu Z.P. Microstructures and properties of high-entropy alloys // Progress in Materials Science. 2014, vol. 61, pp. 1–93.
Downloads
Published
Issue
Section
License
Редакція Видання категорично засуджує прояви плагіату в статтях та вживає всіх можливих заходів для його недопущення. Плагіат розглядається як форма порушення авторських прав і наукової етики.
При виявлені у статті більш ніж 25% запозиченого тексту без відповідних посилань та використання лапок, стаття кваліфікується як така, що містить плагіат. У цьому випадку стаття більше не розглядається редакцією, а автор отримує перше попередження.
Автори, в статтях яких повторно виявлено плагіат, не зможуть публікуватися в усіх журналах Видавництва ДВНЗ «Придніпровська державна академія будівництва та архітектури».
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).