Choice of rational parametres of fiber reinforcement

Authors

  • М. A. Verevicheva Ukrainian State University of Railway Transport., Ukraine
  • A. A. Berestyanskaya Ukrainian State University of Railway Transport., Ukraine https://orcid.org/0000-0002-8886-836X
  • S. B. Derizemlya Ukrainian State University of Railway Transport., Ukraine

Keywords:

fiber concrete, composite, basalt fiber, polypropylene fiber, steel fiber, fiber content, size fiberglass

Abstract

Purpose. One of the ways of improving building material composites is to make composites, while working together dissimilar materials gives an effect equivalent to the creation of a new material whose properties are both quantitatively and qualitatively different from its components. The most promising in this direction is dispersed concrete reinforcement using various types of fibers. Distributing throughout the concrete matrix, fiber provides a three-dimensional reinforcement. The purpose of this article is to conduct a comparative analysis of the strength characteristics of various types of fiber reinforcement for different types of effects, on the basis of which r the price - the strength characteristics of the reinforcement (length and diameter of fiber filaments, or the percentage content by weight fiberglass) are determined. Research is conducted for the basalt, polypropylene and steel fibers. Methods. On the basis of experimental studies by different authors the analysis of the influence of the size and content of the fiberglass on the strength characteristics of the fiber-reinforced concrete for each type of fibers has been given. Results. Basalt fiber is basalt fiber pieces in the form of friable monofilaments length of 3 ... 30 mm, in some cases up to 50 mm, diameter of 13 ... 20 m. The most acceptable from the point of view of strength and processability is length 12 mm, the percentage of 0.2%. Polypropylene fibrovolokno is made from pure polypropylene under continuous process by extrusion and stretching while heating. It is efficient to use fibers of "DІІF" with a diameter of 20 mm and a length of 12 mm and a rate of 1.0 kg / m3. The steel fiber is the most durable and popular material. It can be obtained in various ways: by cutting a steel wire or a thin sheet of turnings, from waste products (for example, from waste cables) and etc. The length of the fibers depends on the technology of its manufacture. Various authors' experimental studies show that the presence of the loops at the ends of the fibers greatly increases the index of adhesion to cement mortar. In this connection, the most suitable anchoring fiber is "Chelyabinka", which has high physical and mechanical characteristics in compared with other types of fibers. It is made of rolled steel (tape, sheet), and a steel strip having at the ends of the anchors in the form of segments of a circle. The ends of the strips are unfolded from each other by an arbitrary angle. Thus, for basalt, polypropylene and steel fibers have been the optimal length, diameter and weight, or the percentage content. Scientific novelty. As a result of the analysis optimal parameters of fiber reinforcement (length, diameter, percent) were selected for various kinds of fibers in order to have a further research of thermal, physical and mechanical properties of concrete on their basis. Practical significance. The increase in the volume of using concrete and structural changes in operating conditions requires continuous improvement of concrete. Based on the analysis of literary sources the information about the most common types of fiberglass has been systematized. This will help to choose the characteristics of fiber-reinforced concrete with optimal price - strength, greatly increasing the strength characteristics of concrete. The study of literature sources also shows that there is practically no data on the strength of fiber-reinforced concrete at temperature influences. This stimulates new experimental and theoretical studies of different types of fiber-reinforced concrete on fire.

Author Biographies

М. A. Verevicheva, Ukrainian State University of Railway Transport.

Department of Building Mechanics and Hydraulics,

Ph. D in Technical Sciences, associate professor.

A. A. Berestyanskaya, Ukrainian State University of Railway Transport.

Department of Building Mechanics and Hydraulics,

associate professor.

S. B. Derizemlya, Ukrainian State University of Railway Transport.

Department of Building Mechanics and Hydraulics,

engineer.

References

Bugaevskiy S. A. Metody vozvedeniya karkasnikh sistem novogo tipa [Methods for the construction of a new type of frame systems]. Vestnik Kharkovskogo natsionalnogo avtodorozhnogo universiteta [Kharkov National Automobile and Highway University], 2012, issue 58, pp. 78–84. http://dspace.khadi.kharkov.ua/dspace/bitstream/123456789/42 5/1/13.pdf

Vasilovskaya N. G., Yendzhievskaya I. G., Kalugin I. G. Tsementnie kompozitsii dispersno-armirovannye bazaltovoy fibroy [Cement compositions disperse-reinforced by the basalt fiber]. Vestnik Tomskogo gosudarstvennogo arkhitekturnostroitelnogo universiteta [Tomsk State University of Architecture and stroitelnny], 2011, issue 3, pp. 153-158. http://www.tsuab.ru/upload/files/additional/17_Vasilovskaja_fil e_3132_3372_8522.pdf

Virobi z betonu, armovani polimernimi voloknami / SOU 20.6-32781078-001:2015 Tovaristvo z obmezhenoiu nidpovidalnostiu «DPF», Dnirpopetrovsk, 2015

Kovalenko V. V. Vliyanie orientirovaniya fibr na kharakter deformirovaniya fibrobetona [Influence of directional orientation of fibers in the fiber concrete character deformation]. Perspekrivi osvoeniya podzemnogo prostranstva : Tretya mizhnarodna naukovo-praktychna konferentsiya molodykh uchenykh, aspirantiv ta studentiv (2009) [3rd International Scientific Conference of young scientists and students]. Dnepropetrovsk, 2009, pp. 84–88 http://ir.nmu.org.ua/handle/123456789/2804

Krutaev A. S., Suleymenov S. T., Yestemesov Z. A. Kompozitsionnie materiali na osnove vyazhushchikh [Composite materials based binders] AN USSR IPM, 1991. 21 p.

Kudyakov K. L., Nevskiy A. V., Ushakova A. S. Vliyanie dispersnogo armirovaniya bazaltovym voloknom na prochnostnie svoystva betona [Influence of disperse reinforcement by basalt fiber on the strength propeties of concrete]. X Mezhdunarodnaya konferentsiya studentov I molodikh uchenikh “Perspektivi razvitiya fundamentalnikh nauk” (23.04- 26.04.2013) Tomsk state university of architecture and building, Russia, Tomsk, 2013, pp. 708-710. http://www.lib.tpu.ru/fulltext/c/2013/C21/239.pdf

Lesovik R. V., Kluev S. V. Fibrobeton na kompozitsionnykh vyazhushchikh i tekhnogennykh peskakh Kurskoy magnitnoy anomalii dlya izgibaemikh konstruktsiy [Fiber concrete containing composite binders and technogenic sands of Kursk magnetic anomaly for flexural structures]. Inzhenerno-stroitelniy zhurnal – Magazine of Civil Engineering, Sankt-Peterburg, 2012, issue 3, pp. 41-47.

Morozov V. I., Pukharenko Yu. V. Effektivnost primeneniya fibrobetona v konstruktsiyakh pri dinamicheskikh vozdeystviyakh [The effectiveness of fiber-reinforced concrete in structures under dynamic loading]. Vestnik Moskovskogo gosudarstvennogo stroitelnogo universiteta [Bulletin of the Moscow State University of Civil Engineering], 2014, issue 3, pp. 189-196.

Novitskiy A. G., Efremov M. V. Aspekty primeneniya bazaltovoy fibry dlya armirovaniya betonov [Aspects of application of basalt fibers for concrete reinforcement]. Naukovo-tekhnichnii zbirnik «Budivelni materiali, virobi ta sanitarna tekhnika» – Scientific and technical collection "Construction materials and sanitary equipment»», Kyiv, 2010, issue 36, pp. 22-26.

Opanaseko E. V., Berestyanskaya A. A. Vidy fibrovogo armirovaniya [Types fiber reinforcement]. Zbirnik naukovykh prats Natsionalnogo universytetuvodnogo gospodarstva ta pryrodokorystuvannya [Collected Works of the National University of Water and Environment] Resursoekonomichni materiali, konstruktsiyi ta sporudi - Resursoekonomni materials, constructions and buildings, Rivne, 2015, issue 30, pp. 57-64.

Pukharenko Yu. V., Panteleev D. A., Zhavoronkov M. I. Effektivnost poliarmirovaniya fibrobetona stalnoy fibroy raznogo tiporazmera [Efficiency poliarmirovaniya fiberreinforced concrete steel fiber of different sizes]. Sovremennie napravleniya teoreticheskikh i prikladnikh issledovaniy. Mezhdunarodnaya nauchno-prakticheskaya konferentciya (19.03-30.03.2013) [International scientific-practical conference] Sborrnik nauchnikh trudov SWorld. Odessa, 2013, pp. 60-64. http://www.sworld.education/konfer30/817.pdf

Pukharenko Yu. V. Nauchnie i prakticheskie osnovi formirovaniya struktury i svoystva fibrobetonov Dokt, Diss. [Scientific and practical bases of formation of structure and properties of fiber-reinforced concrete. Doct. Diss]. Sankt – Peterburg, 2004. 316 p.

Rabinovich F. N., Babaev S. M. Effektivnost primeneniya polimernikh fibr dlya dispersnogo armirovaniya betona [The effectiveness of polymeric fibers to disperse reinforcement of concrete]. Nauchno-tekhnicheskiy i proizvodstvennyy zhurnal «Promishlennoe i grazhdanskoe stroitelstvo» – Scientific and technical and industrial journal "Industrial and civil construction, Moscow, 2009, issue 8, pp. 28–31. http://www.pgs1923.ru/russian/rindex.htm

Ramachandran V., Feldman R., Boduen Dzh. Nauka o betone [Science of Concrete]. Moscow, Stroyizdat, 1986. 279 p.

Rudoy, B. L. Kompozity [Composites]. Moscow : Moskovskiy rabochiy, 1976. 144 p. http://www.nglib.ru/book_view.jsp?idn=005123&page=1&for mat=free

Rymar T. E., Shishina A. S. Svoystva fibrobetona s polipropilenovoy fibroy [The properties of fiber-reinforced concrete with polypropylene fibers]. Vestnik Skhidnoukrainskoho natsionalnogo universytetu im. Volodymyra Dalia [East Ukrainian National University named after Volodymyr Dahl], Lugansk, 2012, issue 17(188), pp. 109-112. http://www.sti.lg.ua/files/nauka/vestnik/vestnik_17_188_ch1_2 012.pdf

Talantova K. V. Stroitelnie konstruktsii s zadannimi svoystvami na osnove stalefibrobetona Dokt, Diss. [Building structures with desired properties based on stalefibrobetona] Barnaul, 2009, 189 p.

Tolmachev S. N., Kondrateva I. G., Marakina L. D., Matyash A. V., Soldatenko S. E. Svoistva dorozhnikh betonov s polimernoy fibroy [The properties road of of concrete with polymer fiber]. Naukovyi visnyk budivnytstva Kharkivskogo natsionalnogo universyteta budivnitstva ta arkhitekturi [Scientific herald the construction of Kharkiv National University of Construction and Architecture], 2008, issue 48, pp. 150-154.

Fudzi T., Dzako M. Mekhanika razrusheniya kompozitsionnikh materialov [Fracture mechanics of composite materials] Moscow, Mir, 1982. 232 p.

Artemenko, S. E. Polymer Composite Materials Made from Carbon, Basalt, and Glass Fibers / S. E. Artemenko Structure and Properties, Fiber Chemistry 2003. – 35(3). – pp. 226-229. Artemenko S. E. Polymer Composite Materials Made from Carbon, Basalt, and Glass Fibers, Structure and Properties, Fiber Chemistry, 2003, issue 35(3), pp. 226-229.

Bhikshma, V. Study on mechanical properties of recycled aggregate concrete containing steel fibers / V. Bhikshma, K. Manipal // Asian Journal of Civil Engineering (Building and Housing), 2012. – 13 (2). – pp. 155-164. Bhikshma V., Manipal K. Study on mechanical properties of recycled aggregate concrete containing steel fibers, Asian Journal of Civil Engineering (Building and Housing), 2012. issue 13(2), pp. 155-164.

Brandt, A. M. Cement – Based Composites / A. M. Brandt : Materials, Mechanical Properties and Performance / Spon Press, 2009. – 2 edition. March.– 544 p. Brandt A. M. Cement – Based Composites, Materials, Mechanical Properties and Performance, Spon Press, 2009. 2 edition March, 544 p.

Klyuyev, S.V. Fiber Concrete on Composite Knitting and Industrialsand KMA for Bent Designs / S.V. Klyuyev, R. V. Lesovik, A. V. Klyuyev, A. V. Netrebenko, N. V. Kalashnikov // World Applied Sciences Journal, 2014.– V. 30.– № 8. – P. 964–969. Klyuyev S. V., Lesovik R. V, Klyuyev A. V., Netrebenko A. V., Kalashnikov N. V. Fiber Concrete on Composite Knitting and Industrialsand KMA for Bent Designs – World Applied Sciences Journal, 2014. V. 30, no 8, pp. 964– 969.

Issue

Section

Innovative lifecycle technology of housing and civil, industrial and transportation purposes