To the mathematical modeling of the area of tubular gas heater in the condensing mode of work
Keywords:
Tubular gas heaters, mathematical model, condensation of water vapor, Knudsen layerAbstract
Purpose. During the combustion of inflammable gases in the air stream, the gas-air mixture, which contains water vapor, is formed inside of the emitting pipe of a heater. While the mixture is moving along the pipe its temperature is decreasing, which leads to the condensation of water vapors from the gas-air mixture. Maximum fuel economy can be achieved through the use of the mode of condensation of water vapor from the gas-air mixture in the construction of the heater. In the process of condensation the condition of vapor near the surface of the phase transition is nonequilibrium. In the existing mathematical model of the tubular gas heater in the condensing mode of operation the state of vapor near the surface of the phase transition is not considered. The purpose of the article is to examine the existing mathematical model of the section of tubular gas heater in the condensing mode of operation and make additions in terms of the specifics of the phase transition.
Methodology. Existing mathematical model of the tubular gas heater with the condensation of water vapor includes the equations of conservation of mass, motion and energy. The processes of condensation of vapor are characterized by the coexistence of the phases, and as a result, by the presence of the surface of the section, in which the flow does not conform to the laws of classical gas dynamics. The layer of the phase section was taken into the consideration – the Knudsen layer, in which the parameters of exchanged mass with the condensation inside of emitting pipe of the tubular gas heater.
Findings. It has been found that there are jumps on the borders of the Knudsen layer in the parameter changes of the exchanged mass, such as average speed, temperature and enthalpy. To determine these jumps it is necessary to solve the Boltzmann equations inside of the Knudsen layer and unite his decisions for the outer domain in relation to the Knudsen layer. The boundary conditions for the Knudsen layer are the limiting conditions for the equations of gas dynamics.
Originality. The question of the possibility of accountability of the nonequilibrium state of vapor near the surface of the phase transition for the mathematical model of the tubular gas heater in the condensing mode has been examined.
Practical value. The ways of determining the parameters of exchangeable mass during the condensation of water vapor into tubular heaters were examined. It allows to make appropriate adjustments in the existing mathematical model.
References
Abramovich G. N. Prikladnaja gazovaja dinamika [Applied gas dynamics]. Moscow, Science Publ., 1991. 600 p.
«Naykowe prace, praktyka, obracomania, innowacje» -Zakopane: Wydawca: Sp. z o.o. «Diamond trading tour», 2013. – S.- 7-13.
Berezjuk A. G. , Tkachova V. V., Irodov V. F. Matematicheskoe modelirovanie trubchatogo gazovogo nagrevatelja s uchetom kondensacii vodjanogo para iz gazovozdushnoj smesi [Mathematical modeling of the tubular gas heater based on the condensation of water vapor from the gas concoction]. Zbiur raportuw naukowych. «Naykowe prace, praktyka, obracomania, innowacje» [Zbiur raportuw research. "Naykowe work, practice, obracomania, innovations»], 2013, pp. 7–13.
Berezjuk H. H., Іродов В. Ф. Matematychne modelyuvannya dilyanky trubchastoho hazovoho nahrivacha u kondensatsiynomu rezhymi roboty [Mathematical modeling of the area of tubular gas heater in the condensing mode of work]. Visnyk Prydniprovskoyi derzhavnoyi akademiyi budivnytstva ta arkhitektury [Bulletin of Prydniprovsk State Academy of Civil Engineering and Architecture], 2014, issue 5, pp. 6–9.
Zudin, Yu. B. Priblizhennyi kineticheskii analiz intensivnoi kondensatsii (An approximate kinetic analysis of intense condensation). Teplofizika i aeromekhanika - Thermophysics and Aeromechanics, 2015, issue 1. pp. 78-85. Available at: http://sibran.ru/journals/issue.php?ID=162998http://sibran.ru/journals/issue.php?ID=162998. (Accessed 5 September 2015).
Kuznetsova I. A., Yushkanov A. A., Yalamov Yu. I. Vliyanie koeffitsienta ispareniya na sil'nuyu kondensatsiyu odnoatomnogo gaza (Effect of the evaporation of a strong gas condensing monohydric). Zhurnal tekhnicheskoi fiziki –Technical Physics, 1997, no. 10, pp. 21–25 Available at: https://scholar.google.com.ua/scholar?cluster=11666693278634597777&hl=ru&as_sdt=0,5. (Accessed 7 September 2015).
V. R. Kulichenko, O. Yu. Shevchenko, V. A. Piddubnyi Teploperedacha z elementamy masoobminu (teoriia i praktyka protsesu) [Heat transfer with elements mass transfer( teorіya аnd practice processes)]. Kiev, Phoenix Publ., 2014. 918 p.
Labuncov D. A. Fizicheskie osnovy jenergetiki. Izbrannye trudy po teploobmenu, gidrodinamike, termodinamiki [Physical bases of energetics. Selected works on heat exchange, fluid dynamics, thermodynamics]. – Moscow: MEI Publ., 2000. 388 p.
Makashev N. K. Isparenie, kondensacija i geterogennye himicheskie reakcii pri malyh znachenijah Knudsena [Evaporation, condensation and heterogeneous chemicalreactions at small values Knudsen]. Uchenye zapiski CAGI -TsAGI Scientific Notes, 1974, vol. 5, no 3, pp. 49–66.
Cherchin'yani K. Teorija i prilozhenija uravnenija Bol'cmana [Theory and applications of the Boltzmann equation]. Moscow: Mir Publ., 1978. 495 p.
Maurice Bond, Henning Struchtrup Mean evaporation and condensation coefficients based on energy dependent condensation probability. The American Physical Society, 2004. 21 p. Available at: www.engr.uvic.ca/~struchtr/2004PRE_evap.pdf. (Accessed 9 September 2015).
E. A. T. van den Akker, A. J. H. Frijns, A. A. van Steenhoven, P. A. J. Hilbers Thermodinamic analysis of molecular dynamics simulation of evaporation and condensation 5th European Thermal-Sciences Conference, The Netherlands, 2008/ 8 p. Available at: http://www.eurotherm2008.tue.nl/Proceedings_Eurotherm2008/papers/Micro_Nano-scale_Heat_Transfer/MNH_14.pdf. (Accessed 10 September 2015).
Mashukin V. I., Samokhin A. A. Boundary conditions for gas-dynamical modeling of evaporation processes. International Seminar "Mathematic al Models & Modeling in Laser-Plasma Processes & Advanced Science Technologies", 2012. pp. 8–11. Available at: http://lppm3.ru/files/journal/XXIV/MathMontXXIVMazhukin.pdf. (Accessed 10 September 2015).
Sone Y. Kinetic theory of аnd fluid dynamics. Modeling and Simulation in Science, Engineering and Technology. Springer Science & Business Media, 2012, 353 p.http://www.dissland.com/catalog/obobshchennaya_teoriya_teploperenosa_v_gazovoy_srede_pri_vseh_chislah_knudsena.htmlseh_chislah_knudsena.html
Downloads
Published
Issue
Section
License
Редакція Видання категорично засуджує прояви плагіату в статтях та вживає всіх можливих заходів для його недопущення. Плагіат розглядається як форма порушення авторських прав і наукової етики.
При виявлені у статті більш ніж 25% запозиченого тексту без відповідних посилань та використання лапок, стаття кваліфікується як така, що містить плагіат. У цьому випадку стаття більше не розглядається редакцією, а автор отримує перше попередження.
Автори, в статтях яких повторно виявлено плагіат, не зможуть публікуватися в усіх журналах Видавництва ДВНЗ «Придніпровська державна академія будівництва та архітектури».
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).