Control high radiation in the workplace

Authors

  • А. S. Bielikov Кафедра безопасности жизнедеятельности, Государственное высшее учебное заведение "Приднепровская государственная академия строительства и архитектуры", ул. Чернышевского, 24-а, 49600, Днепропетровск, Украина., Ukraine https://orcid.org/0000-0001-5822-9682
  • S. Yu. Rahimov Кафедра организации и технического обеспечения аварийно-спасательных работ Национальный университет гражданской защиты Украины, ул. Чернышевского 94, 61023, Харьков, Украина., Ukraine https://orcid.org/0000-0003-0572-4465
  • V. A. Shalomov Кафедра безопасности жизнедеятельности, Государственное высшее учебное заведение "Приднепровская государственная академия строительства и архитектуры", ул. Чернышевского, 24-а, 49600, Днепропетровск, Украина., Ukraine https://orcid.org/0000-0002-6890-932X
  • О. S. Chaplyhin Коминтерновский районный отдел Главного управления ГСЧС Украины в Харьковской области, ул. Зерновая 4-а, 61124, Харьков, Украина, Ukraine https://orcid.org/0000-0002-3213-8210

Keywords:

Thermal radiation, a sensor, limit of measurement, heat flow, radiometer, heating temperature

Abstract

Purpose Ground of application of facilities for measuring of caloradiance on workplaces. Method. Measuring of infrared in the workplace produced with the use of exemplary standard control sensor of DTP-02 with the limit of measuring to 20000 Vt/m2. Results. It is set that the existent devices of domestic and foreign production do not allow to probe the condition of labour on the workplaces of hot productions from the considerable range of caloradiances from 50 to 24000 Vt/m2, that brings in a considerable error in measuring. It is first set that for measuring of both small and considerable on a size thermal streams it is necessary to use low maximum, but highly sensitive sensors, here, measuring out access of thermal stream time. Conformities to law of change a reflectivity are set from the type of material and length of spectrum of radiation. On the basis of the conducted researches of intensity of surplus caloradiance into workings places of hot productions and set, here, the temperatures of heating of surfaces are set distributing of a maximum of wave-length infrared, that is confirmed the law of Golicyna-Vina. The express-method of estimation of reflectivity of materials is offered, which allows operatively to get information on the initial stage of research-anddevelopments protective facilities from infrared. A stand is improved for the lead through of researches of reflecting and allowing ability of materials taking into account the changeable angle of incidence of radiation, here, 5 7 does not exceed the states of surface and its polarization ability, error %. New approach is offered in creation of effective protective facilities taking into account the spectral constituent of infrared. Scientific novelty. On the basis of the first conducted researches, this method of measuring allows to estimate influence on the workplaces of not only primary but also second actinogens. Practical meaningfulness. On the basis of the conducted analysis of existent domestic sensors for measuring of intensity of thermal streams the choice of sensors and research of their descriptions is created taking into account influence on them of temperature constituent.

Author Biographies

А. S. Bielikov, Кафедра безопасности жизнедеятельности, Государственное высшее учебное заведение "Приднепровская государственная академия строительства и архитектуры", ул. Чернышевского, 24-а, 49600, Днепропетровск, Украина.

д.т.н., проф.

S. Yu. Rahimov, Кафедра организации и технического обеспечения аварийно-спасательных работ Национальный университет гражданской защиты Украины, ул. Чернышевского 94, 61023, Харьков, Украина.

к.т.н.

V. A. Shalomov, Кафедра безопасности жизнедеятельности, Государственное высшее учебное заведение "Приднепровская государственная академия строительства и архитектуры", ул. Чернышевского, 24-а, 49600, Днепропетровск, Украина.

к.т.н., доц.

О. S. Chaplyhin, Коминтерновский районный отдел Главного управления ГСЧС Украины в Харьковской области, ул. Зерновая 4-а, 61124, Харьков, Украина

к.т.н.

References

Адрианов В. Н. Основы радиационного и сложного теплообмена / В. Н. Адрианов. - М.: Энергия, 1992. - 464 с. Adrianov V. N. Osnovy radiatsionnogo i slozhnogo teploobmena / V. N. Adrianov. - M.: Ehnergiya, 1992. - 464 s.

Аметистов Е. В. Основы теории теплообмена / Е. В. Аметистов. М.: МЭИ, 2011. -242 с.

Ametistov E. V. Osnovy teorii teploobmena / E. V. Ametistov• M.: MEHI, 2011. -242 s.

Геращенко О. А. Основы теплометрии / О. А. Геращенко. - К.: Наукова думка, 1991. - 192 с.

Gerashhenko O. А. Osnovy teplometrii / O. А. Gerashhenko. - K.: Naukova dumka, 1991. - 192 s.

Гордов А. Н. Основы температурных измерений / А. Н. Гордов О. М. Жагулло, А. Г. Иванова. - М.:

Энергоатомиздат, 1992. - 304 с. Gordov А. N. Osnovy temperaturnykh izmerenij / А. N. Gordov O. M. ZHagullo, А. G. Ivanova. - M.: Energoatomizdat, 1992. - 304 s.

Зигель Р., Хауэлл Дж. Теплообмен излучением / Р. Зигель Дж. Хауэлл. - М.: Мир, 2005. - 934 с. Zigel' R., Khauehll Dzh. Teploobmen izlucheniem / R. Zigel' Dzh. Khauehll. - M.: Mir, 2005. - 934 s.

Криксунов Л. З. Основы инфракрасной техники / Л. З. Криксунов. - М.: Сов. радио, 1988. - 400 с. Kriksunov L. Z. Osnovy infrakrasnoj tekhniki / L. Z. Kriksunov. - M.: Sov. radio, 1988. - 400 s.

Линевег Ф. Измерение температур в технике / Ф. Линевег; [пер. с немец. Т. И. Киселева, В. А. Федорович под ред. Л. А. Чарихова]: справочник: М.: Металлургия, 1989. - 543 с. Lineveg F. Izmerenie temperatur v tekhnike / F. Lineveg; [per. s nemets. T. I. Kiseleva, V. А. Fedorovich pod red. L. А. Charikhova]: spravochnik: M.: Metallurgiya, 1989. - 543 s.

Стрежекуров Э. Е. Особенности исследования терморадиационной напряженности в горячих цехах промышленности / Э. Е. Стрежекуров // Системные технологии. - №4. - 2009. - С. 15-18.

Strezhekurov Eh. E. Osobennosti issledovaniya termoradiatsionnoj napryazhennosti v goryachikh tsekhakh promyshlennosti / Eh. E. Strezhekurov // Sistemnye tekhnologii. - №4. - 2009. - S. 15-18.

Термоприборы, датчики для измерения температуры в промышленности. К.: Наукова думка, 1972. - 224 с. Termopribory, datchiki dlya izmereniya temperatury v promyshlennosti. K.: Naukova dumka, 1972. - 224 s.

Hespel L., Mainguy S., Grajfet J-J. Radiative properties of scattering and absorbing dense media: theory and experimental study. // Journal of Quantitative Spectroscopy & Radiative Transfer. 2013. - Vol. 77. - P. 193-210.

Makino Т. Thermal radiation properties of ceramic materials / Т. Makino, Т. Kunitomo, I. Sakai // Heat Transfer Japan. Res. 2014. - Vol. 13. - No. 74. - P. 33-50.

Nicolau V.P. Spectral radiative properties identification of fiber insulating materials / V.P. Nicolau, M. Raynaud, J.-F. Sacadura // Int. J. Heat Mass. Transfer. 2014. - Vol. 37. - Suppl. l. - P. 311-324.

Wentink Т. Infrared emission spectra / Т. Wentink, W.G. Planet // J. Opt. Soc. Amer. - 2011. - Vol. 51. - No. 36. - P. 595-603.

Published

2015-04-20

Issue

Section

Proceedings in memory of Starodubov