Macroheterogeneous composites based on AI65C020CU15 quasicrystal alloy

Authors

  • V. F. Bashev Department of Experimental Physics and Physics of Metals, The Oles’ Gonchar Dnipropetrovsk National University, 72, Gagarin Ave., Dnipropetrovsk 49050, Ukraine, Ukraine
  • O. V. Sukhova Department of Experimental Physics and Physics of Metals, The Oles’ Gonchar Dnipropetrovsk National University, 72, Gagarin Ave., Dnipropetrovsk 49050, Ukraine, Ukraine https://orcid.org/0000-0001-8002-0906
  • Yu. V Syrovatko Department of Experimental Physics and Physics of Metals, The Oles’ Gonchar Dnipropetrovsk National University, 72, Gagarin Ave., Dnipropetrovsk 49050, Ukraine, Ukraine

Keywords:

quasicrystal filler, macroheterogeneous composite material, furnace infiltration, wetting and dissolution, interface structure formation

Abstract

Purpose. Quasicrystal alloys show promise as a way to create composite materials with unique properties. The search for new compositions and fabrication technologies of composites is needed to enhance their performance life. Methodology. Macroheterogeneous composites reinforced by macrogranules made of Al6sCo20Cu15 quasicrystal alloy were fabricated by pressure-free infiltration at 670 °С during 2 0 .3 0 minutes. АМг30 metal alloy wasused as binder. The composites’ structure was investigated by the methods of metallography, X-Ray analysis and X-Ray microanalysis. Findings. It is shown that the method of pressure-free infiltration allows the practically defect-free structure of АМг30/(Al65Co2oCul5) composite material to be achieved. The changes in the phase composition of the composites affected by temperature-and-time infiltration cycle were determined. The structure formation of interfaces between the filler and the binder is established to proceed under dissolution-and-diffusion mechanism. During the infiltration quasicrystal D-phase dissolves in the infiltrating metal at much higher rate compared to that of crystal phases. This would account for relative content of the quasicrystals in the composites’ structure at the level of not less than 25 pct. Originality. For the first time the method of pressure-free infiltration was applied to fabricate macroheterogeneous composite materials reinforced by quasicrystal filler macrogranules. The temperature-and-time process variables were determined. Al6sCo20Cu15 quasicrystal alloy as filler and АМг30 alloy as metal binder are shown to be promising structural components of the macroheterogeneous composites. The peculiarities in structure formation of interfaces between the filler and the binder were studied. Practical value. For the first time Al6sCo20Cu15 quasicrystal granules sized from 0,25 to 1,5 mm were used to reinforce macroheterogeneous composite materials fabricated by pressure-free infiltration method. Quasicrystal filler granules showing low friction factor and high resistance to corrosion allow performance life of the composites to prolong. As a result, the suggested composites may be used to strengthen or repair friction units of internal combustion engines, turbine compressors, face seals friction couples of diesel pumps, cylinders and other parts of motor transport.

Author Biographies

V. F. Bashev, Department of Experimental Physics and Physics of Metals, The Oles’ Gonchar Dnipropetrovsk National University, 72, Gagarin Ave., Dnipropetrovsk 49050, Ukraine

Dr. Sc. (Physics&Math.), Prof

O. V. Sukhova, Department of Experimental Physics and Physics of Metals, The Oles’ Gonchar Dnipropetrovsk National University, 72, Gagarin Ave., Dnipropetrovsk 49050, Ukraine

Dr. Sc. (Tech.), Prof

Yu. V Syrovatko, Department of Experimental Physics and Physics of Metals, The Oles’ Gonchar Dnipropetrovsk National University, 72, Gagarin Ave., Dnipropetrovsk 49050, Ukraine

д.ф.-м.н, проф.

References

Стабильность композиционных материалов / И. М. Спиридонова, А. Д. Панасюк, Е. В. Суховая, А. П. Уманский. - Днепропетровск: Свидлер, 2011. - 244 с.

Spiridonova I.M., Panasyuk A.D., Sukhovaya E.V., Umanskiy A.P. Stabiljnostj kompozitsionnykh materialov [Composites Stability]. Dnepropetrovsk, Svidler Publ., 2011. 244 p. http://no available

Чердышев, В. В. Структура и свойства механоактивированных композиционных материалов Al/квазикристалл Al-Cu-Fe / В. В. Чердышев, С. Д. Калошкин, И. А. Томилин, Е. В. Шелехов, А. И. Лаптев, А. А. Степашкин, Данилов В. Д. // Физика металлов и металловедение. - 2007. - Т. 104, № 5. - С. 517-524.

Cherdyshev V.V., Kaloshkin S.D., Tomilin I.A., Shelekhov E.V., Laptev A.I., Stepashkin A.A., Danilov V.D. Struktura i svoystva mekhanoaktivirovannykh kompozitsionnykh materialov Al/kvazikristall Al-Cu-Fe [Structure and properties of mechanically activated Al/quasicrystal Al-Cu-Fe composites]. Fizika metallov i metallovedenie - Physics of Metals and Metal Science, 2007, vol. 104, no. 5, pp. 517-524. http://www.maikonline.com/maik/showArticle.do?auid=VAF8 R0Z27R&lang=ru

Carreno-Morelli, E. Processing and characterization of aluminium-based MMCs produced by gas pressure infiltration / E. Carreno-Morelli, T. Cutard, R. Schaller, C. Bonjour // Mater. Sci. Eng. - 1998. - No. A251. - P. 48-57. http://www.elsevier.com/locate/msea

Denoyer, F. Phase transformations in decagonal Al-Cu-Co-Si / F. Denoyer, R. Reich, J. P. Lauriat // Mater. Sci. Eng. - 2000. - No. 294-296. - P. 287-290. http://www.elsevier.com/locate/msea

Dubois, J.-M. Properties and applications of quasicrystals and complex metallic alloys / J.-M. Dubois // Chem. Soc. Rev. - 2012. - No. 41. - P. 4760-6777. http://www.rsc.org/csr

Holland-Moritz, D. Investigation of the short-range order in melts of quasicrystal-forming Al-Cu-Co alloys by EXAFS / D. Holland, G. Jacobs, I. Egry // Mater. Sci. Eng. - 2000. - No. 294-296. - P. 369-372. http://www.elsevier.com/locate/msea

Kenzari, S. Formation and properties of Al composites reinforced by quasicrystalline AlCuFeB / S. Kenzari, P. Weisbecker, M. Curulla, G. Geandier, V. Fournee, J. M. Dubois // Phil. Mag. - 2008. - V. 88, No. 5. - P. 755-766. http://dx.doi.org/10.1080/14786430801955253

Laplanche, G. Microstructures and mechanical properties of Al-base composite materials reinforced by Al-Cu-Fe particles / G. Laplanche, A. Joulain, J. Bonneville, R. Schaller, T. El Kabir // J. All. Comp. - 2010. - No. 493. - P.

-460. http://www.elsevier.com/locate/jallcom

Lee, S. M. Metal matrix composites reinforced by gas-atomised Al-Cu-Fe powders / S. M. Lee, J. H. Jung, E. Fleury, W. T. Kim, D. H. Kim // Mater. Sci. Eng. - 2000. - No. 294-296. - P. 99-103. http://www.elsevier.com/locate/msea

Li, Z. Microstructure and mechanical properties of Al-7%Si matrix composites reinforced by Al63Cu25Fe12 icosahedral quasicrystal particles / Z. Li, H. Geng, H. Qin // Appl. Mech. Mat. - 2011. - V. 55-57. - P. 1022-1027. http://www.scientific.net/AMM.55-57.1022

Meisterernst, G. Understanding Czochralski growth of decagonal AlCoCu / G. Meisterernst, L. Zhang, P. Dreier, P. Gille // Phil. Mag. - 2005. - V. 86, No. 3-5. - P. 323-326. http://mc.manuscriptcentral.com/pm-pml

Mi, S. A study of the ternary phase diagram of Al-Co with Cu, Ag and Au / S. Mi, B. Grushko, C. Dong, K. Urban // J. All. Comp. - 2003. - No. 354. - P. 148-152. http://www.elsevier.com/locate/jallcom

Mukhopadhyay, N. K. Transformation of the decagonal quasicrystalline phase to a B2 crystalline phase in the Al-Cu-Co system by high-energy ball milling / N. K. Mukhopadhyay, G. V. S. Murthy, B. S. Murty, G. C. Weatherly // Phil. Mag. Lett. - 2002. - V. 82, No. 7. - P. 383-392. http://www.tahdf.co.uk/journals

Trebin, H. R. Quasicrystals. Structure and properties / H. R. Trebin.- Weinheim: Wiley : VCH GmbH & Co. KGaA, 2003. - 665 p. http://dnb.ddb.de

Widom, M. Ab initio energetics of transition metal ordering in decagonal Al-Co-Cu / M. Widom, I. Al-Lehyani, Y. Wang, E. Cockayne // Mater. Sci. Eng. - 2000. - No. 294296. - P. 295-298. http://www.elsevier.com/locate/msea

Published

2015-04-20

Issue

Section

Proceedings in memory of Starodubov