DOI: https://doi.org/10.30838/P.CMM.2415.250918.50.130

The choice of materials for the development of protective coatings from hight temperatures

A. S. Belikov, E. M. Korzh, Yu. G. Sharanova, O. G. Karasov

Abstract


Purpose.  When  developing  protective  coatings  to  protect  building  structures  when  exposed  to  high  temperatures,  it  is necessary to determine the necessary materials, which together solve the main task of ensuring the safe operation of building structures. Method. In carrying out the research conducted an analytical review of major groups of protective agents that reduce the  combustibility  of  wooden  construction  structures,  gave  an  assessment  of  their  technical  characteristics,   as  well  as  in accordance with GOST 12.1.044-89 "OHSAS. Fire and explosion of substances and materials. Nomenclature of indicators and methods  for  their  determination",  fire  protection  and  sanitary-technical  indicators  of  the  developed  protection  coating  are determined.  Results.  The authors have conducted studies of raw materials: liquid glass, epoxy resin, graphite, perlite, fly ash. The selection of composition of fire protection composition was carried out according to the scheme "compound  -  the additivethat is flowing  -  the filler". The basis of the coating is liquid glass, because it has such positive characteristics as accessibility, due to the manifestation of liquid glass adhesive properties - the ability to spontaneous hardening with the formation  of artificial silica.  Adding  to  the  liquid  glass  such  components  as  perlite,  graphite  and  epoxy  resin,  taking  into  account  their  positive characteristics regarding the effect of high temperatures, allowed to obtain a new flame retardant composition. For firing tests, an installation was used to determine the coefficient of smoke formation of substances and materials. The essence of the test me thod was  to  determine  the  optical  density  of  smoke  that  occurs  during  flame  combustion  or  corrosion  of  the  sample.  Tests  are conducted in two modes. In the mode of decay, for example, there is a heat flux with a surface density of 35 kW/m2, and in th e mode of flame combustion  -  the heat flow and the flame of the gas burner. The conducted studies on determining the smoke forming ability have shown that the samples provided by the material "Mixture for the production of fireproof coating VPE -1", belong to materials with moderate smoke-forming ability D2. According to the results of the testing of the toxicity of combustionproducts, it turns out that the object of testing is a little dangerous to the class.  Scientific novelty.  Taking into account the theoretical preconditions, the choice of output components for a new fire protection composition has been carried out.  Practical meaningfulness.  The  selection  of  input  components  that  allow  a  targeted  selection  of  protective  coatings  under  high temperatures. Practical significance. A new non-flammable composition has been developed, which is expanded, which allows to transfer  combustible  materials  to  a  group  of  slow-burning  and  to  increase  the  protection  of  building  structures  from  high temperatures. The developed protective composition received the patent of Ukraine for a useful model.


Keywords


fire; extinguishing flame retardants; fire protection of wood; smoke formation; toxicity

References


Korolchenko A. Ya. and Korolchenko O. N. Sredstva ognezaschity [Means of fire protection]. — Moskva : Pozhnauka, 2006. — 258 p. (in Russian).

Belikov A. S., Shalomov V. A., Korzh E. M. and Ragimov S/ Yu. Povyishenie ognestoykosti derevyannyih stroitelnyih konstruktsiy za schet snizheniya goryuchesti drevesinyi [Increase of fire resistance of wooden building structures due to reduction of flammability of wood] Stroitelstvo, materialovedenie, mashinostroenie – [Construction, materials science, mechanical engineering]. PDABA. Dnipro, 2017, no. 98, pp. 38-45. (in Russian).

Cadorin J. F., Perez Jimenez C. and Franssen J. M. Influence of the section and of the insulation type on the equivalent time // Proceedings of the 4th International Seminar on Fire and Explosion Hazards. University of Ulster, 2011. pp. 547–557.

Dou H. S., Tsai H. U. and Khoo B. Ch. Simulation of detonation wave propagation in rectangular duct using three dimensional WENO scheme // Comb. Flame. 2012. V. 154. pp. 644-647.

Roitman V. M. Fire testing of Bilding Materials in View of the Moisture Factor.— First European Symposium of Fire Safety Sicience (Abstracts).— Zurich. ETH. 2005. - pp. 135-136.


GOST Style Citations


1. Корольченко А. Я. Средства огнезащиты: справочник / А. Я. Корольченко, О. Н. Корольченко. —  Москва: Пож-наука, 2006. — 258 с.

2.  Повышение  огнестойкости  деревянных  строительных  конструкций  за  счет  снижения  горючести  древесины  / А. С. Беликов,  В. А. Шаломов,  Е. Н. Корж,  С. Ю. Рагимов  //  Строительство,  материаловедение,  машиностроение  :  сб. науч. тр. / Приднепр. гос. акад. стр-ва и архитектуры.  –  Днепр, 2017. –  Вып. 98 : Энергетика, экология, компьютерные технологии в строительстве. – С. 38-45.

3. Cadorin J. F., Perez Jimenez C., Franssen J. M. Influence of the section and of the insulation type on the equivalent time // Proceedings of the 4th International Seminar on Fire and Explosion Hazards. University of Ulster, 2011.  Р. 547–557.

4. Dou H. S., Tsai H. U., Khoo B. Ch. Simulation of detonation wave propagation in rectangular duct using three dimensional WENO scheme // Comb. Flame. 2012. V. 154. P. 644-647.

5. Roitman V. M. Fire testing of Bilding Materials in View of the Moisture Factor.—  First European Symposium of Fire Safety Sicience (Abstracts).— Zurich. ETH. 2005. —P. 135-136.



Refbacks

  • There are currently no refbacks.