Implementation of the system of engineering knowledge in the design process of precast steel building constructions

Т. І. Sorotuyk, S. A. Terenchuk

Abstract


Annotation.  Purpose.  The  development  of  the  system  of  engineering  knowledge  for  designing  of  precast  steel  building  constructions with its subsequent introduction in the design process.  Methods  of designing of precast building constructions based  on  the  application  of  the  principle  of  decomposition  geometric  model  design  elements  in  their  composition,  followed  by  a  new  connection by technical decision. The rules are based on generalized expert knowledge and consistent with findings of surveys  of  technical condition of real structures operating in different conditions. In order to justify choice of the best composition data on  a new compounds  are  transferred  to  external  CAD  systems,  which  performed  construction  information  model  design  and  calculates  the  loads.  Results. The proposed system of engineering knowledge expands and enhances the capabilities of the existing CAD systems towards  reducing  the  risk  of  making  wrong  decisions  when  designing  new  compounds  related  to  the  lack  of  reliable  regulatory  framework of standards for new design solutions and observational data through the use of expertise.  Originality.  For analytical  support system was built a knowledge base, which contains the atlas of geometric models, elements of units with a description  of the conditions  of  their  use  and  the  base  of  rules  for  composition.  To  manage  the  order  of  operations  in  the  design  process  of  new compounds,  the  model  of  application  knowledge  was  offered,  which  was  constructed  with  taking  into  account  the  features  of  methods of solving the dynamic multi tasks under conditions of uncertainty and risk. The dynamics of model allows timely influence  the schedule of the project by allowing changes in design during the design process.   Practical value.  Implementation of the system  of engineering knowledge allows a significantly increase the degree of automation of the design process of precast steel const ructions  and  the  designing  speed.  The  interaction  of  developed  system  with  external  CAD  systems  enables  to  provide  the  imitational  modeling of features of unique precast constructions, that are essential in creating appropriate technical documentation and  reduces  the costs for additional tests. Visualization of geometric models elements of units a significantly affect the reliability  of solutions  when  used  natural  intelligence  at  the  stage  of  the  application  of  knowledge  through  the convenience  of  a  large  amount  of  information.


Keywords


Knowledge Engineering; Intelligent integrated decision-making system; knowledge base; rule base

References


Eremenko B.M. Modeliuvannia intelektualnoi systemy dlia diagnostyky tekhnichnogo stanu obiektiv budivnytstva [Modeling intellectual system for diagnostics of technical state of construction], Tekhnologichnyi audyt ta rezervy vyrobnytstva [Technology of production and reserves audit], 2015, vol. 1/2, no. 21, 44-48 pp. (in Ukrainian).

Mikhailenko V.M. Informatsiina tekhnolohiia otsinky tekhnichnogo stanu elementiv budivelnykh konstruktsii iz zastosuvanniam nechitkykh modelei [Information technology assessment of technical state of elements of building designs using fuzzy models]. Stroitelstvo, materialovedenie, mashinostroenie [Construction, materials science, mechanical engineering], 2013, issue 70, pp 133-141. (in Ukrainian).

Nevliudov I. Sh., Andrusevych A.O., Evseev V.V. and Miliutina S.S. Osnovy system avtomatyzovanoho proektuvannia: tekhnichna pidhotovka vyrobnytstva [Computer-Aided Design Basics: technical preparation of production], Kyiv, National Aviation University, 2014. 360 p. (in Ukrainian).

Sorotiuk T.I. Doslidzhennia vydiv zyednan konstruktyvnykh elementiv karkasnykh budivel [Research connections kinds of frame structural elements of buildings]. Teoria i praktyka budivnytstva [Theory and practice of construction], 2012, issue 10, pp 39 -42. (in Ukrainian).

Sorotiuk T.I. and Terenchuk S.A.Modeliuvannia systemy avtomatyzatsii proektuvannia zyednan v zbirnykh karkasnykh konstruktsiakh [Simulation System Design Automation joints in precast of frame structures]. Stroitelstvo, materialovedenie, mashinostroenie [Construction, materials science, mechanical engineering ], 2013, issue 70, pp 219 -224. (in Ukrainian).

Sorotiuk T.I., Terenchuk S.A. and Yeremenko B. M. Informatsiina tekhnolohiia avtomatyzovanoho proektuvania ziednan zbirnykh karkasnykh konstruktsii [information technology aided designing of connections of precast frame structures], Stroitelstvo,

materialovedenie, mashinostroenie [Construction, materials science, mechanical engineering ], 2016, issue 86, pp 100 -107. (in Ukrainian).

Теренчук Terenchuk S.A., Eremenko B.M. and Zhurybeda D.B. Modeli i metody otsinky ryzykiv v investytsiinykh budivelnykh proektakh v umovakh nevyznachenosti [Models and methods for risk assessment in investment construction projects under uncertainty], Teoria i praktyka budivnytstva [Theory and practice of construction] 2009, issue 5, pp 49-53. (in Ukrainian).

Eastman C. et al. Building Information Modeling handbook: A guide to building information modeling for owners, managers, designers, engineers and contractors. – John Wiley & Sons, 2011., 611 p.

Pashko A.O. Simulations of standard Brownian motion. Computer modelling & new technologies –2014, issue 18(10), pp 516-521.

Romney, B. An Efficient System For Geometric Assembly Sequence Generation and Evaluation / B. Romney, C. Godard, M. Goldwasser, G. Ramcumar // Proc. ASME. Intl Computers in Engineering Conf. – 1995. – P. 699–712. doi:10.1.1.131.838

Wilson, R. H. A framework for geometric reasoning about tools in assembly / Proceedings of International Conference on Robotics and Automation. – Vol. 2. – р. 1837–1844.

Yeremenko B. Pashko A. and Terenchuk S. Statistical Simulation of Accidental Loads in the Problems of Constructional Mechanics / B. Yeremenko, // Advansed Materials Research. – 2015. – Vol 1122. – P. 249-252.


GOST Style Citations


1.  Єременко  Б.  М.  Моделювання  інтелектуальної  системи  для  діагностики  технічного  стану  об’єктів  будівництва  / Б.М. Єременко // Технологічний аудит та резерви виробництва. – 2015. – №1/2(21). – С. 44-48.

2.  Міхайленко  В.  М.  Інформаційна  технологія  оцінки  технічного  стану  елементів  будівельних  конструкцій  із застосуванням  нечітких  моделей  /  В.М. Міхайленко,  О.О.  Терентьєв,  Б.М. Єременко  //  Строительство,  материаловедение, машиностроение. – 2013. – Вып. 70. – С. 133-141.

3.  Невлюдов  І.  Ш.  Основи  систем  автоматизованого  проектування:  технічна  підготовка  виробництва  /  І.  Ш. Невлюдов, А.О. Андрусевич, В. В. Євсєєв, С. С. Мілютіна. — Київ: Національний авіаційний університет, 2014 — 360 с.

4.  Соротюк Т.  І. Дослідження видів з’єднань конструктивних елементів каркасних будівель / Т.І. Соротюк // Теорія і практика будівництва. – 2012.– Вип 10. – С. 39-42.

5.  Соротюк Т.  І. Моделювання системи автоматизації проектування з’єднань в збірних каркасних конструкціях / Т.І. Соротюк, С.А. Теренчук – Строительство, материаловедение, машиностроение – №70. –  2013.– С. 219-224.

6.  Соротюк Т.  І. Інформаційна технологія автоматизованого проектування з’єднань збірних каркасних конструкцій / Т.І. Соротюк, Теренчук С.А., Єременко Б.М. – Строительство, материаловедение, машиностроение – №86. –  2016.– С. 100-107.

7.  Теренчук  С.  А.  Моделі  і  методи  оцінки  ризиків  в  інвестиційних  будівельних  проектах  в  умовах  невизначеності  [Текст] / С.А. Теренчук, Б.М. Єременко, Д.Б. Журибеда // Теорія і практика будівництва.  – 2009. – Вип 5. – С. 49-53.

8.  Eastman  C.  et  al.  Building  Information  Modeling  handbook:  A  guide  to  building  information  modeling  for  owners, managers, designers, engineers and contractors. – John Wiley & Sons, 2011., 611 p.

9.  Pashko A.  O.  Simulations of standard Brownian motion /  A.O.  Pashko //  Computer modelling & new technologies –2014, issue 18(10), pp 516-521.

10.  Romney  B. An Efficient System For Geometric Assembly Sequence Generation and Evaluation / B. Romney, C. Godard, M. Goldwasser, G. Ramcumar // Proc. ASME. Intl Computers in Engineering Conf. – 1995. – P. 699–712. doi:10.1.1.131.838 Romney, B. An Efficient System For Geometric Assembly Sequence  Generation and Evaluation, Proc. ASME. Intl Computers  in Engineering Conf., 1995, P. 699–712. doi:10.1.1.131.8385

11.  Wilson  R. H. A framework for geometric reasoning about tools in assembly / R. H. Wilson // Proceedings of International  Conference on Robotics and Automation. – Vol. 2. – р. 1837–1844.

12.  Yeremenko B. Statistical Simulation of Accidental Loads in the Problems of Constructional Mechanics / B. Yeremenko, A. Pashko, S. Terenchuk // Advansed Materials Research. – 2015. – Vol 1122. – P. 249-252.



Refbacks

  • There are currently no refbacks.