Effect of surface-active elements and temperature and deformation parameters on structure and intergranular corrosion resistance of tubes made of austenitic cr-ni and cr-ni-mo steels

T. А. Dergach, S. A. Panchenko

Abstract


Abstract. Purpose: establishment of maximum permissible content of surface-active elements: carbon, boron, nitrogen and development of scientifically substantiated technological means ensuring high resistance to intergranular corrosion (IGC) of coldrolled tubes of austenitic chrome-nickel and nickel-chrome-molybdenum steels. Procedures. Methods of optical metallography, chemical analysis tests for resistance to IGC by methods of AMU and DU, GOST 6032 and mechanical tension properties were used. Methodology. Methods of optical metallography, chemical analysis, tests of IGC resistance according to standard GOST 6032 and mechanical properties (tensile tests) were used. Findings. Negative effect of carbon (above 0,025%) and boron (as a microadditives in quantities of 0,001…0,003%) on resistance of 03Х18Н11 and 03Х17Н14М3 steels to IGC in strong oxidizing media has been established. Scientific ideology based on the principle of grain-boundary design and the data on boron properties ensuring high resistance to IGC of cold-rolled tubes made from tubular billets of reduced corrosion resistance has been developed and realized.  Originality. Scientific ideology based on the principle of grain-boundary design ensuring formation of a structure containing  80% of special low-energy grain boundaries and high resistance to IGC of tubes made of austenitic Cr-Ni and Cr-Ni-Mo steels has been proposed. Practical value. The scientific solutions were introduced at CENTRAVIS PRODUCTION UKRAINE JSC, Nikopol, they contribute to enhancement of the production efficiency.

Keywords


austenitic high-alloy steels, surface-active elements, cold-rolled tubes, deformation, quenching, initiating temper, grainboundary design, microstructure, corrosion resistance

References


Ulyanin Е.А. Korrozionnostoykiye stali i spluvi. Spravochnik. М.: Меtallurgiya. – 1980. 145 s.

Shlyamnev А. Nerjaveyuschiye stali s nizkim soderjaniyem ugleroda. Nasionalnaya metallurgiya. М: – 2003. – № 3. – S. 73-75.

Pumpyanskiy D.А. Sostoyaniye i perspektivi razvitiya trubnogo proizvodstva v Rossii. Dostijeniya v teorii i praktike trubnogo proizvodstva. Sb. nauch. trudov konf. «Trubi Rossii -2004». – 2004. – С. 15-19.

Ulunsev D. Noviye marki nerjaveyuschih staley za rubejom // Natsionalnaya metallurgiya. – М: – 2004. – № 1. – S. 82-83.

Dergach Т.А. Avtoreferat diss… k.t.n. –Dnepropetrovsk: – 2004. 24 s.

Dergach Т. А. Vliyaniye termicheskoy obrabotki na strukturu i stoikost protiv MKK stali 03H18N11 / Т. А. Dergach, G. D. Suhomlin // Sb. nauch. trudov: Stroitelstvo, materialovedeniye, mashinostroyeniye. Ser.: Starodubovskiye chteniya-2005. – Dnepropetrovsk: – 2005. – S.134-144.

Briant C.L. The Effects of Alloying Elements on Impurity Induced Intergranular Corrosion. // Corrosion. – 1982. – V. 38, – No.4. – P. 230-232.

Dergach. Т.О. Vpliv boru na strukturoutvorenna ta opir mijkristalitniy korozii austenitnoi stali / Т.О. Dergach, G. D. Suhomlin, L.М. Deineko // Metaloznavstvo ta obrobka metaliv. Naukovo-tehnich jurn. FTIMS. – Kiiv: – 2004. – № 2. – S. 54-61.

Dergach Т.А. Vliyaniye bora na mikrostrukturu I svoystva nizkouglerodistoy austenitnoy hromonikelevoy stali // Voprosi atomnoy nauki i tehniki. Ser.: Fizika radiasionnih povrejdeniy i radiatsionnoye materialovedeniye. – Harkov: – 2005. – №5. – S. 80-86.

Goldshmidt H. The Effect of Boron on Structure Austenitic Steel 20Cr-25Ni  J. of the Yron unib Steel Inst., November, – 1971. V. 201. – № 11. – P. 900-911.

Bungardt K. The Effect of Boron on Structure and Properties of Steel 304 / K Bungardt., R.Oppenheim  Archiv fur den Eisenhuttenwesen. – 1961. – V.32. № 2. – P. 95-101.

Otterberg R., Roberts W.  Stainless Steels 84: Proc. Conf. Goteborg, 3-4 Sept. 1984. London, – 1985. – P. 229.

Kolotirkin Ya.М. Segregatsiya primesey na granitsah zeren i mejkristallitnaya korroziya Nerjaveyuschih staley  Ya.М. Kolotirkin, О.V. Kasparova // Itogi nauki i tehniki. Korroziya i zaschita ot korrozii. – М.: – 1978. – Т.6. – S. 180-217.

Feldgandler E.G. Vliyaniye bora na svoystva nizkouglerodistoy stali tipa 03H17N14М3 / E.G. Feldgandler, L.Ya. Savkina // Kachestvenniye stali I splavi. – M.: – 1978, № 3. – S. 51-55.

Kopezky Ch.V. Multiple twinning and specific properties of Σ=3n boundaries in FCC crystals / Ch.V. Kopezky, A.V. Andreeva, G.D. Sukhomlin // Acta Metall. Materials. – 1991. – V. 39, №7. – P. 1603-1615).

Murr L. E. Investigatioon of relative interfacial free energies in 304 stainless steel by electron transmission and diffraction microscopy // Acta Metall. – 1968. – Vol. 16. – P. 1127-1145.

Murr L. E. Measurement of interfacial free energies and associated temperature coefficients in 304 stainless steel / L. E. Murr, G. I. Wong, R. J. Horylev // Acta Metallurgica. – 1973. – Vol. 21. – Р. 595-604.

Jin W. Improvement of Intergranular Stress Corrosion Crack Susceptibility of Austenite Stainless Steel through Grain Boundary Engineering / W. Jin, S. Yang, H. Kokawa, Z.J. Wang and Y.S. Sato // J. Mater. Sci. Technol. – 2007. – V. 23. – № 6. – Р. 785789.

Shimada M. Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin induced grain boundary engineering / M. Shimada, H. Kokawa, Z.J. Wang, Y.S. Sato, I. Karibe // Acta Materialia. – 2002. – № 50 – Р. 2331-2341.

Rollett A. D. Grain Boundary Engineering and Coincident Site Lattice (CSL) Theory. Advanced Characteri-zation and Microstructural Analysis / A. D. Rollett, P. Kalu // Engineering Innovative Materials. Spring – 2005. – Р. 27-75.

Eckenrod J.J., Kovach C.W. Effect of Nitrogen on the Sensitization, Corrosion and Mechanical Properties of 18Cr-8Ni Stainless Steels. – Properties of Austenitic Stainless Steels and Their Weld Metals  ASTM STP 679. – 1979. – P. 17-41.


GOST Style Citations


 1. Ульянин Е.А. Коррозионностойкие стали и сплавы. Справочник. М.: Металлургия. – 1980. 145 с.

2. Шлямнев А. Нержавеющие стали с низким содержанием углерода. Национальная металлургия. М: – 2003. – № 3. – С. 73-75.

3. Пумпянский Д.А. Состояние и перспективы развития трубного производства в России. Достижения в теории и практике трубного производства. Сб. науч. трудов конференции «Трубы России-2004» – Екатеринбург: – 2004. – С. 15-19.

4. Улунцев Д. Новые марки нержавеющих сталей за рубежом // Национальная металлургия. – М: – 2004. – № 1. – С. 82-83.

5. Дергач Т.А. Автореферат дисс… к.т.н. – Днепропетровск: НМетАУ, – 2004. 24 с.

6. Дергач Т. А. Влияние термической обработки на структуру и стойкость против МКК стали 03Х18Н11 / Т. А. Дергач, Г. Д. Сухомлин // Сб. науч. трудов: Строительство, материаловедение, машиностроение. Сер.: Стародубовские чтения2005. – Днепропетровск: – 2005. – С.134-144.

7. Briant C.L. The Effects of Alloying Elements on Impurity Induced Intergranular Corrosion. // Corrosion. – 1982. – V. 38, – No.4. – P. 230-232.

8. Дергач. Т.О. Вплив бору на структуро-утворення та опір міжкристалітній корозії аустенітної сталі / Т.О. Дергач, Г.Д. Сухомлин, Л.М. Дейнеко // Металознавство та обробка металів. Науково-технічний журнал. ФТІМС. – Київ: – 2004. № 2. – С. 54-61.

9. Дергач Т.А. Влияние бора на микроструктуру и свойства низкоуглеродистой аустенитной хромо-никелевой стали // Вопросы атомной науки и техники. Сер.: Физика радиационных повреждений и радиационное материаловедение. – Харьков: – 2005. – №5. – С. 80-86.

10. Goldshmidt H. The Effect of Boron on Structure Austenitic Steel 20Cr-25Ni  J. of the Yron unib Steel Inst., November, – 1971. V. 201. – № 11. –  P. 900-911.

11. Bungardt K., Oppenheim R. The Effect of Boron on Structure and Properties of Steel 304  Archiv fur den Eisenhuttenwesen. – 1961. – V.32. – № 2. – P. 95-101.

12. Otterberg R., Roberts W.  Stainless Steels 84: Proc. Conf. Goteborg, 3-4 Sept. 1984. London, – 1985.

13. Колотыркин Я.М. Сегрегация примесей на границах зерен и межкристаллитная коррозия нержавеющих сталей  Я.М. Колотыркин, О.В. Каспарова // Итоги науки и техники. Коррозия и защита от коррозии. – М.: – 1978. – Т.6. – С. 180-217.

14. Фельдгандлер Э.Г. Влияние бора на свойства низкоуглеродистой стали типа 03Х17Н14М3 / Э.Г. Фельдгандлер, Л.Я. Савкина // Качественные стали и сплавы. – 1978, № 3. – С.51-55.

15. Kopezky Ch.V. Multiple twinning and specific properties of Σ=3n  boundaries in FCC crystals / Ch.V. Kopezky, A.V. Andreeva, G.D. Sukhomlin // Acta Metall. Materials. – 1991. – V. 39, №7. – P. 1603-1615). 

16. Murr L. E. Investigatioon of relative interfacial free energies in 304 stainless steel by electron transmission and diffraction microscopy // Acta Metall. – 1968. – Vol. 16. – P. 1127-1145.

17. Murr L. E. Measurement of interfacial free energies and associated temperature coefficients in 304 stainless steel / L. E. Murr, G. I. Wong, R. J. Horylev // Acta Metallurgica. – 1973. – Vol. 21. – Р. 595-604.

18. Jin W. Improvement of Intergranular Stress Corrosion Crack Susceptibility of Austenite Stainless Steel through Grain Boundary Engineering / W. Jin, S. Yang, H. Kokawa, Z.J. Wang and Y.S. Sato // J. Mater. Sci. Technol. – 2007. – V. 23. – № 6. – Р. 785789.

19. Shimada M. Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin induced grain boundary engineering / M. Shimada, H Kokawa., Z.J. Wang // Acta Materialia. – 2002. – № 50 – Р. 2331-2341.

20. Rollett A. D. Grain Boundary Engineering and Coincident Site Lattice (CSL) Theory. Advanced Characteri-zation and Microstructural Analysis / A. D. Rollett, P. Kalu // Engineering Innovative Materials. Spring – 2005. – Р. 27-75.

21. Eckenrod J.J., Kovach C.W. Effect of Nitrogen on the Sensitization, Corrosion and Mechanical Properties of 18Cr-8Ni Stainless Steels. – Properties of Austenitic Stainless Steels and Their Weld Metals  ASTM STP 679. – 1979. – P. 17-41.

Статья рекомендована к опубликованию д.т.н., проф. Г.Д. Сухомлин, д.т.н., проф. Л.Н. Дейнеко



Refbacks

  • There are currently no refbacks.