УДК 620.193

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ КОРРОЗИОННОЙ СТОЙКОСТИ БЕТОНА НА КАРБОНАТНЫХ ЗАПОЛНИТЕЛЯХ

Савицкий Н.В., Шехоркина С.Е., , Амир Алани*, Карим Лимам**, Бардах А.Е.

ГВУЗ «Приднепровская государственная академия строительства и архитектуры»,

*Гринвичский университет (Великобритания), **Университет Ля – Рошель (Франция)

Актуальность проблематики и постановка задачи. Благодаря своим эксплуатационным характеристикам, бетон и железобетон являются одним из наиболее широко используемых строительных материалов. Значительный объем бетонных и железобетонных конструкций эксплуатируется в условиях воздействия жидких агрессивных сред. Большинство бетонных конструкций в среде морских и речных обнаруживают признаки деградации в результате коррозии. В связи с этим необходимо обеспечить их надежность и долговечность в течение срока службы.

Изложение основного материала. Требуемая долговечность может быть обеспечена путем использования определенных конструктивных и технологических параметров, таких как защитный слой бетона, водоцментное соотношение, коррозионностойкие заполнители [1]. Ряд исследований [2, 3, 4] показал, что добавки карбонатных заполнителей позволяют повысить долговечность бетона в агрессивных сульфатных средах.

С целью оценки влияния карбонатных заполнителей на долговечность бетона на базе ГВУЗ ПГАСА выполнялись экспериментальные исследования прочности и долговечности бетонных образцов, в течение 20 лет подвергавшихся воздействию сульфатных растворов.

Взаимодействие между жидкой агрессивной средой и активными компонентами цемента является комплексным процессом. Связанные сульфат-ионы неравномерно распределяются по глубине взаимодействия между бетоном и агрессивной средой. Следовательно, и характеристики бетона неравномерно изменяются по сечению. Таким образом, если экспериментальный образец имеет массивное поперечное сечение, полученные характеристики бетона не правильно отобразят между изменением свойств бетона численными взаимосвязь характеристиками коррозионных процессов [2, 3]. С целью исключения данного фактора в исследовании физико-химических характеристик бетона в условиях сульфатной коррозии принято использовать цилиндрические образцы с толщиной стенки 10 и 20 мм. В данных исследованиях характеристики бетона в условиях сульфатной коррозии изучались на цилиндрических образцах с толщиной стенки 10 мм.

Для приготовления бетонной смеси был использован низкоалюминатный цемент. В качестве мелкого заполнителя в бетонных смесях применялся кварцевый и карбонатный песок, а также пылевидные частицы, полученные

путем измельчения карбонатного песка на шаровой мельнице. Основные параметры кварцевого песка: модуль крупности 1,83, насыпная плотность 1600кг/м³, плотность частиц 2650 кг/м³. Гранулометрический состав кварцевого песка приведен в табл. 1. Характеристики и гранулометрический состав карбонатного песка приведены в табл. 2 и 3.

Бетонные смеси изготовлялись в бетоносмесителе и уплотнялись на стационарном вибростоле. Твердение бетона проводилось при тепловой обработке в следующем порядке: предварительное выдерживание – 3 часа, нагрев до температуры 85 °C – 3 часа, изотермическое прогревание – 6 часов, охлаждение при закрытой крышке – 8 часов.

Гранулометрический состав кварцевого песка

№ сита, мм 2.5 1.25 0.63 0.315 0.14 Нижний поддон Остаток на сите, % 92.7 100 3.1 8.5 22 56.7

Характеристики карбонатного песка

Таблица 2

Таблииа 1

Содержани	Содержание частиц, %					ь,	
глинистых	органических	Плотность частиц, кг/м³	Модуль крупности	Насыпная плотность, кт/м³	Пустотность, %	$ m V_{\it Me}$ льная поверхност $ m cm^2/r$	Водопотребность, %
0.8-1.1	норма	2730	2.0-2.2	1412	48	120	5.7

Таблииа 3

Грануломег	триче	еский с	состав	карбон	атного	песка	
еп сит мм	5	2.5	1.25	0.63	0.315	0.14	полл

L	Размер сит, мм	3	2.5	1.23	0.03	0.313	0.14	поддон
	Полные остатки, %	5.5	6.0	14	32.0	59	93	100

Для исследования влияния карбонатных заполнителей на долговечность агрессивных сульфатных растворах в бетонных варьировалось содержание карбонатного песка и пылевидных частиц. Исследования выполнялись на 6 сериях образцов, которые представляют собой полые цилиндры с толщиной стенки 10 мм, внешним диаметром -50 мм и высотой 50 мм. Составы и характеристики смесей представлены в табл. 4.

Погружение образцов в агрессивный раствор производилось в возрасте бетона 28 дней. Торцевые поверхности образцов были отшлифованы для устранения неплоскостности опорных поверхностей, после чего покрывались парафином для избегания преждевременного коррозионного разрушения.

Таблица 4 Состав и характеристики бетонных смесей для изготовления образцов

		Соде	ржание п			
Номер	Наименование	кварце- вого	карбонат -ного	пылевид- ных частиц	Состав бетонной смеси, Ц:П:В/Ц	
1	Д-50-КВ-88-ПЧ-12	88	-	12	1:2:0.50	
2	Д-50-КВ-93-ПЧ-07	93	-	7	1:2:0.50	
3	Д-50-КВ-98-ПЧ-02	98	-	2	1:2:0.50	
4	Д-50-КВ-100-ПЧ-0	100	-	-	1:2:0.50	
5	Д-50-КА-93-ПЧ-07	-	93	7	1:2:0.50	
6	Д-50-КА-88-ПЧ-12	-	88	12	1:2:0.50	

Образцы выдерживались в 5% растворе сульфата натрия. В течение всего периода испытаний проводился систематический мониторинг концентраций сульфатных растворов. При этом не допускалось изменение концентрации сульфат-ионов более чем на 5 % от первоначальной, в случае чего производилась полная замена раствора.

Спустя 20 лет испытаний в 5% растворе Na_2SO_4 было выполнено визуальное обследование и испытание на сжатие образцов. Общий вид образцов из бетона на карбонатном и кварцевом песке после 20 лет исследования долговечности приведен на рис. 1-6.

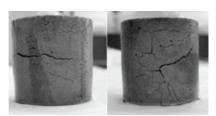


Рис. 1. Общий вид образцов серии 1 (Д-50-КВ-88-ПЧ-12) после 20 лет испытаний в 5% растворе Na_2SO_4

Как видно из рис. 1-6, образцы на карбонатных заполнителях имеют лишь отдельные волосяные трещины, в то время как в образцах на кварцевом песке присутствуют трещины шириной более $1\,$ мм, а сами образцы практически сильно деформированы и практически разрушены.

Для оценки влияния карбонатных заполнителей на прочность бетона, подверженного воздействию агрессивной сульфатной среды, были выполнены испытания образцов на сжатие.

По результатам испытаний, а также с использованием данных, полученных на ранних этапах проведения исследования ([3]), были построены

графики изменения прочности на сжатие бетонных образцов, выдерживаемых в 5% растворе Na2SO4, в течение 20 лет. Полученные графики представлены на рис. 7.

По данным рис. 7 можно сделать вывод, что после 20 лет экспозиции в 5% растворе сульфата натрия образцы серий 5 и 6, содержащие 88% и 93%

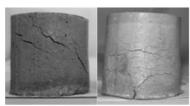


Рис. 2. Общий вид образцов серии 2 (Д-50-КВ-93-ПЧ-07) после 20 лет испытаний в 5% растворе Na_2SO_4

Рис. 3. Общий вид образцов серии 3 (Д-50-КВ-98-ПЧ-02) после 20 лет испытаний в 5% растворе Na_2SO_4

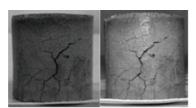


Рис. 4. Общий вид образцов серии 4 (Д-50-КВ-100-ПЧ-0) после 20 лет испытаний в 5% растворе Na_2SO_4

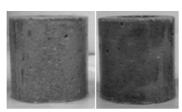


Рис. 5. Общий вид образцов серии 5 (Д-50-КА-93-ПЧ-07) после 20 лет испытаний в 5% растворе Na_2SO_4

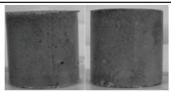


Рис. 6. Общий вид образцов серии 6 (Д-50-КА-88-ПЧ-12) после 20 лет испытаний в 5% растворе Na_2SO_4

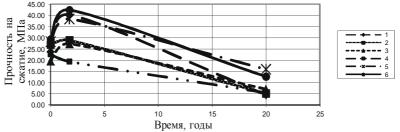


Рис. 7. Изменение прочности на сжатие бетонных образцов, выдерживаемых в 5% растворе №2SO₄ в течение 20 лет (1 - Д-50-КВ-88-ПЧ-12, 2 - Д-50-КВ-93-ПЧ-07, 3 - Д-50-КВ-98-ПЧ-02, 4 - Д-50-КВ-100-ПЧ-0, 5 - Д-50-КА-93-ПЧ-07, 6 - Д-50-КА-88-ПЧ-12)

карбонатного песка, соответственно, характеризуются более высокой прочностью. При этом прочность на сжатие образцов на карбонатном песке в 1.8-3.5 раз выше, чем образцов на кварцевом песке. Наибольшую прочность имеют образцы 5 серии с содержанием карбонатного песка 93 %. Прочность образцов на кварцевом песке (1-4 серии) после 20 лет испытаний примерно одинакова.

Выводы. Выполнены экспериментальные исследования прочности и долговечности бетонных образцов с варьируемым содержанием кварцевого и карбонатного песка, в течение 20 лет подвергавшихся воздействию сульфатных растворов. Проведенные исследования подтверждают положительное влияние карбонатных заполнителей на долговечность бетона в условиях воздействия сульфатных жидких сред.

СПИСОК ЛИТЕРАТУРЫ

- 1. Долговечность железобетона в агрессивных средах / С.Н. Алексеев, Ф.М. Иванов, С. Модры, П. Шиссль. М.: Стройиздат, 1990. 320 с.
- 2. Савицкий Н.В. Основы расчета надежности железобетонных конструкций в агрессивных средах. Дисс. д.т.н. Дн-ск, 1994. 410 с.
- 3. Ракутумаву Ф.А. Надежность и долговечность железобетонных элементов из бетона на карбонатных заполнителях в жидких сульфатных средах. Дисс. к.т.н. Днепропетровск, 1991. 228 с.
- 4. Матюшенко И.Н. Прогнозирование долговечности бетона в жидких агрессивных средах. Дисс. к.т.н. Днепропетровск., 2008. 156 с.