Limits of management strengthening of structural steel

Authors

  • Yu. Ya. Meshkov G.V. Kurdyumov Institute for Metal Physics of NAS of the Ukraine, 36, Vernadsky av., 02142, Kyiv, Ukraine, Ukraine
  • А. V. Shiyan G.V. Kurdyumov Institute for Metal Physics of NAS of the Ukraine, 36, Vernadsky av., 02142, Kyiv, Ukraine, Ukraine
  • V. N. Grishchenko G.V. Kurdyumov Institute for Metal Physics of NAS of the Ukraine, 36, Vernadsky av., 02142, Kyiv, Ukraine, Ukraine

Keywords:

embrittlement, fragility, bearing capacity, break resistance, over-voltage coefficient, embrittlement coefficient.

Abstract

Purpose. For  structural  steels  to  increase  their  strength  is  only  advisable  provided  concomitant  increase  structural strength of products and structural elements, due to the lack of metal embrittlement features in products. The objective of this work was to determine the limits of the rational increase strength steels 40 and 30ХГСА based on the criterion of maximum load capacity models with regulated notch. Methodology. Tensile testing of standard samples of smooth 6 mm diameter circular specimens with notch. Findings. The  relationship  σ0,2 conditional  yield  strength  with an  average  nominal  voltage  failure  σNF specimens  with  the stress by increasing the strength  of steel in the range from 374 MPa to 1533 MPa. It has been shown that increasing the bearing capacity notched specimen is only possible if the indicator Br break resistance steel exceeds a certain critical value of 1,6...1,8 for this type of stress concentrator. Originality. It was shown that a decrease in break resistance Br below the critical value with an increase in  strength  σ0,2 become  an  indicator  of  reaching the  limit  of  its  sound  reinforcement,  not  threatening  manifestation  of  signs  of embrittlement  in  the presence  of  stress  concentrators. Practical  value. Establishing  the limits  of  rational hardening  steels  help  in technological practice in the selection of optimal technology of hardening steel, and engineering and design practice - to link the choice of steel products to increase its structural reliability.

Author Biographies

Yu. Ya. Meshkov, G.V. Kurdyumov Institute for Metal Physics of NAS of the Ukraine, 36, Vernadsky av., 02142, Kyiv, Ukraine

Dr. of Tech. Sci., Corresponding Member of NAS of the Ukraine

А. V. Shiyan, G.V. Kurdyumov Institute for Metal Physics of NAS of the Ukraine, 36, Vernadsky av., 02142, Kyiv, Ukraine

Cand. Sc. (Phys. and Math.)

V. N. Grishchenko, G.V. Kurdyumov Institute for Metal Physics of NAS of the Ukraine, 36, Vernadsky av., 02142, Kyiv, Ukraine

j.r.

References

Grishchenko V.N., Meshkov Iu.Ia., Polushkin Iu.A., Shiian A.V. Vliianie prochnosti na okhrupchivaemost` stalei` pod dei`stviem koncentratorov napriazhenii` // Metallofizika i novei`shie tekhnologii. - 2015. - T.37. - № 7. - S. 961-971.

Meshkov Iu.Ia., Kotrechko S.A., Shiian A.V. Mehanicheskaia stabil`nost` metallov i splavov. - K.: Naukova dumka, 2014. - 277 s.

Shiian A. V. Fizicheskoe obosnovanie kriteriia classifikatcii konstruktcionny`kh stalei` po prochnosti // Metallofizika i novei`shie tekhnologii. - 2011. - T. 33. - № 12. - S. 1703-1716.

Nott Dzh. Osnovy` mehaniki razrusheniia. - M.: Metallurgiia, 1978. - 256 s.

Savin G.N., Tul`chii` V.I. Spravochnik po koncentratcii napriazhenii`. - K.: Vy`sshaia shkola, 1976. - 410 s.

Kogaev V.P., Mahutov N.A., Gusenkov A.P. Raschety` detalei` mashin i konstruktcii` na prochnost` i dolgovechnost`. - M.: Mashinostroenie, 1985. - 224 s.

Hollomon J. H. Tensile deformation // Trans. AIME. Iron Steel Div. - 1945. - Vol. 162. - P. 268-290.

Han Dzh., Averbakh B.L., Owen V.S., Koe`n M. Vozniknovenie mikrotreshchin skola v polikristallicheskom zheleze i stali // Atomny`i` mehanizm razrusheniia. - M.: Metallurgizdat, 1963. - S. 109-137.

Pisarenko G.S., Lebedev A.A. Deformirovanie i prochnost` materialov pri slozhnom napriazhennom sostoianii. - K: Naukova dumka, 1976. - 415 s.

Published

2016-03-22

Issue

Section

Proceedings in memory of Starodubov