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3JIEMEHTOB, 3aHMMAIOT OYEHb MHOTIO BPEMEHH IpHU (POpMHpOBaHMM HEOOXOIMMBIX MATpHll U Hed()(PEKTHBHO ONEPUPYIOT Hal
GonpMMU 00beMaMHu aHHBIX. HeoOXoauM Mouck HOBBIX, O0Jiee COBEPIICHHBIX METOAOB 00PaOOTKH PE3yIbTaTOB TONOIOIHYECKOM
panuonanusamuu. Memoouxa. IIpennoxeHHsli anroputM o0paboTKH Pe3yJIbTaTOB TONOJOTMYECKOH paloHaIH3aluy 6azupyercs
Ha BEKTOPHU3alluM KOOPAMHAT LIEHTPOB JIEMEHTOB U Ha I10C/IE/I0BAaTENLHOM HIepeHoce 6a3uca CUCTEMbl KOOPJMHAT OT OJJHOIO LEHTpPa
3JIEMEeHTa K cienyromeMy. Jlnsd peanusanuu NpesioKeHHOH uien Obul paspaboraH mporpamMHelii kox B cucreme MATLAB.
Pesynomamur. YKa3aHHbIHA alnroput™ ObUT HCIIBITAH HA TECTOBBIX 33/[a4aX Pa3HOro pasMepa M CI0KHOCTU reoMeTpuH. IlomydeHHble
Ppe3ynbTaThl NOATBEPKAAIOT 3PPEKTUBHOCTE pa3paboTaHHoro Merona. IlonydyeHo yckopeHue pacuera B 2-6 pa3 B 3aBUCUMOCTH OT
pazMepa pemiaeMoii 3ajaud. YCTaHOBJIEHO, YTO C YBEJIMYEHHEM pa3sMepa 3ajaud NOoBbIAeTcs 3PdEeKTHBHOCTL MeTona. Takke
HOATBEPK/IEHO MPEIION0KEHNE O BO3MOKHOCTH 3HAYUTENILHOIO YCKOPEHMsSI pacueTa TONOJIOrMYECKOH palMOHANU3aluK 3a CYeT
YMEHBLICHHS 3aTpaT BPEMEHM Ha pacyeT KOHEYHO DJIEMEHTHOH MOJEIM C IOMOLIBIO MTEPATHBHBIX METOZOB DPEIICHHS CHCTEM
JIMHEHHBIX YPaBHEHHMH M C IIOMOLIBIO TEXHONOrMil cOepexenus namsatu. Hayunas noeuzna. COBEpLICHCTBOBAHHE CHCTEMbI
00paboTKH pe3yJabTaTOB TONOJIOIMYECKON PAlMOHAIM3AMY ITyTeM NMPUMEHEHUsI BEKTOPU3ALUM JAHHBIX M HPEATOKALMU MaMSITH.
Ilpaxkmuueckaa 3uauumocms. Vicnons3oBaHue NPEJIOKEHHOIO METOJA MOXKET YCKOPHUTH BHEAPEHHE METOJOB TOIOJIOrMYECKOH
PaLOHATIN3ALUH B IOBCEJHEBHOE IIPOCKTUPOBAHMUE.
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Abstract: Existing algorithms for processing the results of topological rationalization are imperfect. They can effectively treat
the results only in the case of simple geometry, and for the evenly sized finite elements. They take a lot of time during the formation
of the necessary matrices and inefficiently operate on large volumes of data. That is why the need to search for new and improved
methods of processing the results of topological rationalization arises. Methodology. The proposed algorithm for processing the
results of topological rationalization is based on the vectoring of coordinates of the centers elements and then on subsequent transfer
of the basis of the coordinate system from one center of the element to another. To implement this idea, the program code in the
MATLAB was developed. Results. This algorithm has been tested on the test problems of different size and of different geometrical
complexity. The results confirm the effectiveness of the discussed method. A time saving on matrix formulation is observed to vary
between factors of 2 and 6 depending on the size of the problem being solved. It is also found that along the increase of size of the
problem the efficiency of the method also increases. Also the assumption about the possibility of a significant acceleration of the
calculation of the topological rationalization has been confirmed. This was achieved by reducing the time spent on solution of finite
element model through the implementation of iterative methods for solving systems of linear equations and usage of memory savings
technology. Scientific novelty. Improvement in processing of the results of topological rationalization by applying data vectoring and
memory preallocation. The practical significance. Usage of the proposed method can help to accelerate the introduction of
topological methods for rationalization in everyday civil engineering design practice.
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Introduction

When designing bearing structures of a building
choosing the right structural concept plays an important
role. Generally to determine the best concept engineers
have to rely on their experience and intuition. However,
for complex and non-standard designs, the shape of
which is determined on the basis of a large number of
independent factors, or in the case of an implicit
connection between the possible design and the loads
acting on the structure, the decisions made on the basis of
abstract concepts may not be optimal, and in some cases
even catastrophic. The solution to this problem is the
application of mathematical methods of optimization to
find the most effective design solutions.

Mathematical methods for finding the optimal
solution can be applied at all stages of the project. During
the development of preliminary solutions (on this step a
wide variety of choices is usually developed, only one
from them will be subsequently selected) optimization
techniques can be used to select the optimal topology of
a structure (topology optimization) and to find the most
effective form of the developed structure (shape
optimization).

At the stage of structural design various linear and
nonlinear optimization methods may be employed to
determine values for design parameters that governs
characteristics of a structure such as the cross-sectional
dimensions, the types of connections (rigid or hinged),
and various physical, technical and aesthetic constraints
defined by regulations.

For the stage of final drawing development it is also
possible to use the aforementioned methods for
optimizing the joints of structural elements.

This paper is devoted to development of robust
approaches to implementation of topology optimization
in civil engineering. AT the moment topology techniques
had very limited implementation in the building industry.
Following examples are among most noticeable instances
of this technique application to design process in civil
engineering. Topology optimization was used to derive
the optimal number, location and shape of holes in the
exterior reinforced concrete walls of an office building
near to the Takatsuki JR Station in Japan (see Figure 1).
The walls were modelled as simple rectangular plates
and optimized for vertical and horizontal loading
combinations. The result was found to be both
aesthetically pleasing and structurally sound. It should be
noted that the architecture of the entire building was
totally governed by structural considerations arising from
the results of the topology optimization study.

Topology optimization has also been used for purely
architectural purposes. The architectural aspiration of the
Doha Education Centre’s roof canopy support was to
mimic the form of a Sidra tree[1]. Topology optimization
studies were performed in order to define the geometry
of the canopy support structure. It was found that the
resulting form has strong resemblances to a tree trunk
indeed (see Figure 2).
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Figure 1. Building designed on the basis of topologically

optimized concept.
a)  Concept of a structure
b)  Practical realization
¢)  Stages of optimization
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Figure 2. Educational center, Doha, Quatar

Apparatus of topology optimization has also been
used to develop a project proposal of the Bionic Tower in
2007 in Dubai, United Arab Emirates. Due to the crisis
the project has not been realized (see Figure 3)[2, 3].

Figure 3. Bionic tower concept, Dubai, UAE

This topic lies in sphere of interests of many of the
world universities. The staff of Georgia Institute of
Technology (USA) is currently developing an approach
to structuring and regularization of design solutions
obtained on the basis of topological optimization [4]. The
preliminary result of their work is presented on the
Figure 4.

Although  the implementation of topology
optimization can significantly benefit the building
industry there are still several obstacles that prevent the
universal usage of this approach by practicing engineers.
Among these obstacles one of the most important is the
time required to obtain the final solution. Since the
topology optimization is an iterative procedure the time
required to solve the problem is equivalent to the time
necessary to solve the problem with predefined topology
times the amount of iterations necessary to obtain
converged solution (this number heavily depends on the
complexity of the problem) times the amount of load
cases considered on this stage.
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Figure 4. Design concept of tower with regular grating

The time that solution takes can be roughly divided
into four categories: time for model generation, time for
generation of constant topology entities, time for FE
solution and time for the solution of topology
optimization problem.

Model generation is a stage that is different for each
problem and thus is very complex to enhance, moreover
since model generation occurs only once the time spent
on this stage however significant it may be (it is far
inferior to time required to generate a model for ordinary
purposes) is irrelevant to the method performance.

Time required for the FE solution to take place is the
most significant time consumers of the topology
optimization cycle. This is so due to the fact that solution
is performed on each iteration and load step. This results
in the demand for productive methods to compute the
necessary elemental results. One of the possible
approaches to increasing the productivity of the solution
stage will be briefly discussed further.

The time spent on the solution of topology problem is
not as significant as the time spent in FE solver,
especially for large problems but it is very important to
use the appropriate techniques to achieve the best
performance. MATLAB software has been used in this
paper as a solver for topology problem. To achieve the
best performance such techniques as loop vectorization
and memory preallocation has been used [5]. Loop
vectorization is the use of vector and matrix operations in
order to avoid for and while loops. Memory preallocation
means that the maximum amount of memory required for
an array is reserved a priori, hence avoiding the costly
operation of reallocating memory and moving data as
elements are added to the array.

This paper will be devoted to the minimizing the time
required for creation of topology constant entities. This
process is extremely computationally intense and can
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result in memory overfloat if handled carelessly. This can
occur due to the creation of a matrix that relates each
element position to another. This process results in
creation of square matrix the size of which is equal to the
amount of elements. It is obvious the amount of memory
allocated for such matrix scales exponentially with the
problem size. This paper presents a possible solution for
creation of such a matrix with minimal amount of
operations possible.

Methodology

General information about topology optimization

Topology optimization is a kind of shape
optimization of structures, sometimes referred to as the
optimization of the layout. Purpose of topology
optimization is to determine the best use of the material
for the scrutinized object or structure, so that the
objective function (for example, the overall stiffness or
natural frequency) reaches a maximal or minimal value
in the presence of existing restrictions (such as volume
reduction). Unlike traditional optimization, topological
optimization does not require to set parameters of
optimization explicitly (i.e. independent variables are
optimized).

In topology optimization the role of variable in the
objective function is played by the function of
distribution of the material in design space. In contrast to
the optimization of shape and size of bearing elements
topology optimization allows to find an optimal
distribution of the material in a given design space under
certain load and boundary conditions.

The most common formulation of the topology
optimization problem is a Solid Isotropic Material with
Penalisation (SIMP) described in detail in the works of
Sigmund and Bendose and Andrea [6-10]. This
formulation suggests that the material of a scrutinized
design space acts as a porous structure. The optimization
is aimed at location the best position for such pores with
respect to the predefined degree of porosity.

(GREY) I

‘A SPACE WITHIN THE
DESIGNABLE DOMAIN THAT
HAS BEEN SPEGIFIED AS YOID
IN THE FINAL SOLUTION

BOUNDARY CONDITIONS
APPLIED TO THE DESIGNABLE
DOMAIN

e

A REGION OF THE
DESIGNABLE DOMAIN
THAT HAS BEEN
SPECIFIED AS SOLID IN
THE FINAL SOLUTION

Figure 5. General outline of the optimization problem

Design space is defined as the space within which
optimized design will be found. The space is divided into
elemental regions each with its own porosity value. For
such formulation objective function can be a total strain
energy of the structure under the load and boundary
conditions. The problem also has a boundary for
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condition that limits the maximum volume or weight of
the structure.

For the purpose of optimization the design domain is
discretized finite elements mesh. Then for each element a
value of relative density x. is assigned. This relative
density governs the element basic characteristics such as
mass, Young’s modulus etc. For such approach Young’s
modulus of each element E, is determined by the
following formula:

Ee(xe) = Epin + %P+ (EO - Emin)r Xe € [0,1] (D)

Where:

E,— Young’s modulus of material.

E,.., — a very small stiffness assigned to void regions
in order to prevent the stiffness matrix from becoming
singular.

p — is a power law penalization factor, that is
introduced into the system to transform a system from a
continuum state with density values varying between 1
and 0 into a discrete system where only two of these
values will be present. Practice had shown that the best
results can be achieved when the value of this parameter
is p=3.

The mathematical formulation of the optimization
problem reads as follows[7]:

min:, C(x) = UTKU =Y, E,(x,) - ueTkoue\I

Ve _

w T L)
KU=F |
0<x<1 )

Where:

C — compliance of the system;

U and F — the global displacement and force vectors,
respectively;

K — the global stiffness matrix;

u. — the element displacement vector;

k. — the element stiffness matrix for an element with
unit Young’s modulus.

x — the vector of design variables (i.e. the element
densities) ;

N — the number of elements used to discretize the
design domain;

V(x) and V, — the material volume and design domain
volume, respectively;

f—the prescribed volume fraction.

The optimization problem (2) is solved by means of a
standard optimality criteria method:
xgew —
max(0,x, —m) if x, - B,”7 < max(0,x, — m)
min(1, x, + m) if x, - B, = min(1, x, + m) (3)
X, " B, otherwise

Where:

m — positive maximal move limit of variable on each
iteration;

n —numerical damping coefficient, equals to: n=1/2;



CBOPHUK HAYYHBIX TPYJIOB CTPOUTEJBLCTBO, MATEPUAJIOBEAEHUE, MAIIMHOCTPOEHMUE. BBIII. 82 -2015

ac

— _Oxe
Be_ av

“4)
xe

Where:

A — Lagrangian multiplier that is chosen in such a
way that the volume restriction is observed;

The sensitivities of the objective function ¢ and the
material volume ¥ with respect to the element densities
x.are given by:

ac

- B_xe =-p xep_1 ' (EO - Emin) ' ueTkoue %)
v
Fra (6)
Where:

V,—1is a volume of a finite element.

In order to ensure existence of solutions to the
topology optimization problem and to avoid the
formation of checkerboard patterns and dependency on
finite element discretization, some restriction on the
design parameters must be imposed[11], [12].

Dy

Figure 6. The checkerboard problem demonstrated
on a square structure subject to biaxial stress
a) Design problem;
b) Solution without checkerboard control;
¢) Solution with sensitivity filtering.

A common approach to solve this problem is the
application of a filter to either the sensitivities (5) or the
relative densities. Filter sets a new value for design
parameters in element on the basis of weighted average
of the results stored in the elements located in the
vicinity (this zone is governed by r,,;, parameter) of the
considered element. Two of the possible filtering
schemes are presented here.

The sensitivity filter modifies the sensitivities Oc/0Ox,
as follows:

ac 1

max(y,xe) XieN, Hei

Where
vy — a small positive number introduced in order to
avoid division by zero.

Hey; = max(0, 1y — Ale, 1))

o
L ax;

ZieNe Heix

()

oxe

®)

A(e,i) — center-to center distance between elements

The density filter transforms the original densities x,
as follows:

— 1

X

¢ = i ot * Lien HeiXi 9
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In the case where a density filter is applied, the
sensitivities of the objective function ¢ and the material
volume V with respect to the physical densities X, are
still given by equations (5) and (6), provided that the
variable x, is replaced with X,. The sensitivities with
respect to the design variables x; are obtained by means
of the chain rule:

ay oY 0%,

B_xl- = ZieN j 3_9??3_961

Where

0y — cither the objective function ¢ or the material
volume V'

L.y ¥
Jeafc“e

= ZieN-

J ZiengHei

(10)

Results and discussion

Filtering pattern generation

The application of a sensitivity filter according to
equation (7) involves a weighted average over different
elements. This is a linear operation; it can therefore be
implemented as a matrix product of a coefficient matrix
and a vector containing the original sensitivities 0C/0x;
(multiplied with the design variables x;). Dividing the
result by a factor max(y, x.)XX;ene He; yields the filtered
sensitivities 6%6. The matrix H and the vector H;
contain the coefficients H, and the normalization
constants ) ;cne Hei, TESpectively.

The use of a density filter not only implies filtering of
the densities according to equation (9) but also a chain
rule modification of the sensitivities of the objective
function and the volume constraint according to equation
(10). Both operations involve a weighted average over
different elements. Use is made of the same coefficients
H and normalization constants Hs as described above.

Both the matrix H and the vector Hs remain invariant
during the optimization and are computed a priori. The
coefficient matrix H establishes a relationship between
all elements. However, according to the filter kernel
defined in equation (8), only neighboring elements affect
one another. As a consequence, the majority of the
coefficients are zero and the matrix H is sparse.

Sparse matrix is a matrix in which most of the
elements are zero. By contrast, if most of the elements
are nonzero, then the matrix is considered dense. When
storing and manipulating sparse matrices on a computer,
it is beneficial and often necessary to use specialized
algorithms and data structures that take advantage of the
sparse structure of the matrix. Operations using standard
dense-matrix structures and algorithms are slow and
inefficient when applied to large sparse matrices as
processing and memory are wasted on the zeroes. Sparse
data is by nature more easily compressed and thus
require significantly less storage. Some very large sparse
matrices are infeasible to manipulate using standard
dense-matrix algorithms. A matrix is typically stored as a
two-dimensional array. Each entry in the array represents
an element g;; of the matrix and is accessed by the two
indices i and j. Conventionally, i is the row index,
numbered from top to bottom, and j is the column index,
numbered from left to right. For an m x n matrix, the
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amount of memory required to store the matrix in this
format is proportional to m X n.

In the case of a sparse matrix, substantial memory
requirement reductions can be realized by storing only
the non-zero entries. Depending on the number and
distribution of the non-zero entries, different data
structures can be used and yield huge savings in memory
when compared to the basic approach.
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Figure 7. Sparse matrix representation of 2D design
space

One way to decrease time for FE solution

Analyzing the time spent in the FE solver the most
time consuming process is creating of global stiffness
matrix with following factorization of it. Since for each
iteration the stiffness matrix will be different this
operation has to be repeated each time. This results in a
significant increase of computational time. To solve this
problem one can consider taking different approach to
the solution FE problem. Among such approaches one of
the most promising is usage of preconditioned conjugate
gradients method to solve the linear equations. They do
not require a costly matrix factorization of the assembled
matrix, and they always run in memory and do only
minimal I/O [13]. Another plus of usage of this method
can arise from application of additional technique
intended on memory saving. This technique uses an
element-by-element approach (rather than globally
assembling the stiffness matrix) and as such significantly
up to 10 times decreases amount of time required for the
solution of a well-conditioned model.

New filtering pattern creation algorithm

The existing approaches to the problem are
meticulously described in the works of Bendose &
Sigmund, Jensen and Andreassen [7], [8], [11]. The idea
is to create a sparse matrix that will relate the results in
neighboring elements and is such a way get rid of
fictious void regions caused by mesh dependency or
checker-board phenomena.

The sparse function used in this paper takes three
vectors as input arguments: the first and second contain
the row and column indices of the nonzero matrix
entries, which are collected in the third vector. It is the
built-in sparse MATLAB function. It is constructed by
means of Row and column index vectors iH and jH as

well as a vector sH with non-zero entries are assembled.
In order to avoid continuous resizing of these vectors as
entries are added, a sufficient (but slightly too high)
amount of memory is preallocated. The entries that
remain unused in the vectors iH, jH, and sH have no
effect: they preserve their initial value (1, 1, and 0,
respectively) and result in the addition of a zero term to
the first element of the sparse matrix H.
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Figure 8. Performance diagram for Sparce and PCG
solvers

The scope of this paper is development of an
approach to speed up the process of sparse matrix H
formulation. The general trend observed in the works of
Bendose & Sigmund, Jensen and Andreassen [7], [8],
[11] is to use the rectangular design space with the
similar elements of similar size and basing on these
prerequisites to operate on predefined elements when
creating a filtering pattern. This approach helps to
significantly decrease amount of time necessary to create
the pattern, but it has very limited applicability for real
life problems where design space can’t be simplified to a
rectangle or when the usage of square or cubic finite
elements is impossible. For such cases general
instructions are to conduct a search for each element to
find the elements located in the vicinity of this element
and fill the matrix with the appropriate weighting factors.
This can be described in the following code lines:

for iii=l:elem count
for jjj=l:elem count
dist= sqgrt((x(iii)-x(jjj))"2+...
(vy(1ii)-y(333))"2+...
(z(iii)-z(333))"2)
pp=max (0, 1-dist) /r min);
if pp>0
k=k+1
H(1,k)=pp;
1H(1,k)=1ii1;
JH(1,k)=333;
end
end
end

It can be seen that to solve this problem it is
necessary to perform elem_count2 operations to fill up
the matrix. The use can be made of the matrix symmetry:
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for iii=l:elem count
for jjj= iii:elem count
dist= sgrt((x(iii)-x(333))"2+...
(v(iii)-y(333))~2+. ..
(z(1ii)-z(333))"2)
pp=max (0,1-dist) /r min);
if pp>0
k=k+1
H(1,k)=pp;
1H(1,k)=1ii1i;
JH(1,k)=335;
if iii ~=337

k=k+1
H(1,k)=pp;
H(1,k)=333;
JH(1,k)=1ii;
end
end
end

end
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Figure 9. Time spend on each inner loop iterations for
existing methods

This can reduce the computational cost from the
elem count’ operations to elem count’/2
operations. Both of these approaches are extremely
inefficient when tackling the problem even of a small
size. To overcome this problem an approach based on
vectorization of the problem has been used. The
coordinates of element centers have been formed as
vectors. Then the coordinate transmutation has been
performed. The purpose of this transformation is to move
the coordinate centers to the center of the element under
consideration. This simple transformation results in a
very elegant way of obtaining a whole column and row
(due to symmetry) of A matrix in just one operation
instead of elem count operations. This approach also
indicates that each following iteration will operate on the
smaller vector then the previous one. This can be
described in the following code lines:

end index=0;
for iii=l:elem count
dist= sqgrt((x(iii)-x(jjj))"2+...
(v(iii)-y(333))~2+...
(z(1ii)-z(333))"2)
pp=max (0,1-dist) /r min);
elem red count=nnz (pp) ;
[row i,~,s ij] find(pp) ;
start index=l+end index;
end index=start index+...

177

(elem red count*2-1)-1;
sH(1l,start _index:end index)= .
[s_ 13" s 1j(2: end)'];
iH(1,start index:end index)=
© [(row i+iii-1)',
ones (1, (elem red count-1))*iii];
jH(1,start_index:end index)=
[ones (1, elem red count)*iii,
(row i(2:end)+iii-1)'];
end

This can reduce the computational cost from the
elem count’2 operations to elem count/2
operations. This approach has been successfully
implemented in MTLAB software and used for topology
optimization of several test cases. The main advantage of
this approach is ability to consider only relevant elements
for each iteration. Another great advantage of this
method is its independence from the shape and size of
finite elements used for solution. This can greatly
simplify solution process for complex geometries which
are common in practice of engineer.

Figure 10. Time spent on each iteration for the proposed
method

Conclusion

This paper presents a MATLAB code for creation of
filtering pattern matrix for topology optimization. The
major difference with respect to the code proposed by
Andreassen [7] is the computational efficiency. An
improvement in speed with a factor of 3.4 has been
measured for an example problem with 48960 elements.
It has also been found that the larger the problem the
more efficient the proposed code is. This has mainly
been accomplished by means of loop vectorization and
memory preallocation.

The classical filter requires information about the
neighbor elements, which for irregular meshes and
complex geometries is obtained by a relatively expensive
search. The computational complexity of previously
applied codes, as well as the memory utilization, are
proportional to 7, in 2D and to 7,,;," in 3D respectively.
The new approach decreases the computational cost so
that it only depends linearly on the length parameter r.
Therefore, for large filter radius, especially in 3D, the
filtering scheme proposed in this paper should be the
preferred choice. This approach is also beneficial for
smaller problems with a complex geometries.



CBOPHUK HAYYHBIX TPYJIOB CTPOUTEJBLCTBO, MATEPUAJIOBEAEHUE, MAIIMHOCTPOEHMUE. BBIII. 82 -2015

This paper also presents an approach to speed up the
finite element solution stage of topology optimization.
This is achieved by combining usage of iterative solver
with the memory saving techniques that don’t require to
create a general stiffness matrix.
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