УДК: 669.017:621.78:539.4:621.771.29

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ГОРЯЧЕЙ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ И ТЕРМИЧЕСКОЙ ОБРАБОТКИ НА СТРУКТУРУ И СВОЙСТВА ЛИТОЙ КОЛЕСНОЙ СТАЛИ

А. А. Кононенко, н. с., А. И. Бабаченко, к. т. н., с. н. с., А. Ю. Борисенко, к. т. н., с. н. с., А. И. Яценко, к. т. н., с. н. с., П. Л. Литвиненко, к. т. н., с. н. с., А. А. Даличук И. П. Федорова, к. т. н., с. н. с.

Институт черной металлургии им. З.И. Некрасова НАН Украины

Введение. Различные элементы цельнокатаных железнодорожных колес из-за неравномерности деформационной проработки литой структуры исходной заготовки, обусловленной геометрией колеса и режимами горячей пластической деформации (ГПД), неодинаковы по микроструктуре и свойствам.

Изучению влияния ГПД и режимов термической обработки (ТО) на структуру и свойства стали для железнодорожных колес посвящены многие исследования, например [1, 2]. Наряду со многими микроструктурными характеристиками (количество, состав и распределение неметаллических включений, доэвтектоидного феррита, дисперсность перлита и др.) на свойства железнодорожных колес большое влияние оказывает структура аустенита, зависящая от процессов кристаллизации, режимов ГПД и температуры нагрева стали при ТО. Конечные свойства и структура стали, в т.ч. и размер зерна, наследственно связаны с исходным дендритно-зеренным строением и химической микронеоднородностью, формирующихся при кристаллизации [3-7]. В работах [8, 9] показано, что увеличение деформационной проработки литой стали, оцениваемое по уменьшению расстояния между следами химической неоднородности дендритной структуры, при ГПД приводит к увеличению равномерности микроструктуры, большему измельчению зерна и повышению механических свойств железнодорожных колес и осей.

Причины повышения свойств литой стали в связи с изменениями ее дендритной структуры и химической микронеоднородности после ГПД и ТО многообразны и во многом остаются не выясненными. В работе [4] отражено мнение многих исследователей, согласно которому уменьшение химической микронеоднородности при ГПД литой стали объясняется ускорением выравнивающей диффузии "...через сокращение путей диффузии в результате сближения элементов дендритного строения... и в результате создания большого числа нарушений структуры". Однако данные самих авторов работы [4] показывают, что гомогенизирующее действие процессов нагрева и ГПД невелико. Уменьшение химической микронеоднородности литых сталей 40Х, 40ХН и 35XM наблюдалось до сравнительно небольшой степени деформации (суммарной вытяжки 2,5). Дальнейшее увеличение деформации и связанное с этим повышение плотности дендритной структуры при суммарной вытяжке 15 не приводило к уменьшению химической микронеоднородности. Установлено, что большее действие на выравнивание дендритной ликвации оказывает нагрев под прокатку [4].

Целью настоящей работы являлось объяснение влияния ГПД и ТО на из-

Строительство, материаловедение, машиностроение

менение структуры и свойств литой колесной стали во взаимосвязи с ее исходной химической микронеоднородностью, обусловленной дендритной кристаллизацией. Общие теоретические выводы этой работы могут быть применимы и для других марок стали; они дополняют существующие представления о структурной наследственности в металлах и сплавах.

Материал и методика исследований. Исследования выполнены на образцах размером 70×70×80 мм, вырезанных из промышленного слитка колесной стали с 0.59% С. 0.73% Mn. 0.31% Si, 0.005% S и 0.017% Р, которые обрабатывали в лабораторных условиях по двум режимам: 1 – ГПД осадкой на величину 20, 30, 40, 50 и 60% после аустенитизации при 1240°С; 2 – нормализация (аустенитизация при 860 °C, охлаждение на воздухе со скоростью 6-10 °С/с) предварительно осаженных образцов по режиму 1. Такие режимы моделируют обработку колесной заготовки в промышленных условиях на ОАО "ИНТЕРПАЙП НТЗ". Металлографические исследования выполнены на световых микроскопах "Neophot-2", "Axiovert 200 М МАТ" и растровом электронном микроскопе РЭМ-106^{*}. Первичную структуру и концентрационную микронеоднородность стали выявляли травлением образцов в горячем растворе пикрата натрия [7]. Конечную структуру выявляли травлением в нитале. Измерения параметров микроструктуры осуществляли с помощью систем автоматического анализа изображения, обеспечивающих высокую точность количественного микроанализа. Механические испытания на статическое растяжение проводили в соответствии с ГОСТ 1497-84 на испытательной машине "Instron". Определение ударной вязкости выполнено по ГОСТ 9454-78 на маятниковом копре PSW-30.

Результаты и их обсуждение. Литая структура колесной стали промышленного производства так же, как и в лабораторных слитках, изученных ранее [10, 11], представляет собой дендриты аустенита, периферийные области которых обогащены примесными элементами (С, Si, Mn и др.) и имеют вследствие этого более интенсивное травление в пикрате натрия. Наибольшая ликвация наблюдается в зонах срастания дендритов; промежуточная – между их ветвями; наименьшая – в осевых участках дендритных ветвей (рис. 1, *a*). Дендриты аустенита пересекаются вторичными межкристаллитными границами аустенита, образующимися после кристаллизации стали, вдоль которых выделяется доэвтектоидный феррит (рис. 1, *a*, δ). Конечная структура представляет собой перлит и доэвтектоидный феррит в количестве 0,56%. Размер зерна, определяемый по ферритной сетке, в стали после кристаллизации составляет ~ 200 мкм. ГПД литой стали приводит к уменьшению среднего размера зерна аустенита до 140–85 мкм и увеличению количества доэвтектоидного феррита до 3,5–5% при 20–60% деформации соответственно.

^{*} Электронно-микроскопические исследования выполнены совместно с А.А. Тараненко (ГП "Научно-исследовательский трубный институт им. Я.Е. Осады")

Рис. 1. Первичная (*a*, *в*, *д*, *ж*) и конечная (б, *г*, *е*, *з*) микроструктура стали с 0,59% С после кристаллизации (*a*, *б*) и ГПД (*в*, *г* – 30%; *д*, *е* – 50%; *ж*, *з* – 60%). *а*, *в*, *д*, *ж* –×50, травлено в пикрате Na; *б*, *г*, *е*, *з* –×250, травлено в нитале

Строительство, материаловедение, машиностроение

По данным работ [10, 11] предполагается, что доэвтектоидный феррит в литой стали после кристаллизации выделяется на большеугловых межкристаллитных границах аустенита, образующихся вследствие его микропластической деформации под действием термических и объемных напряжений. По данным работы [12] доэвтектоидный феррит выделяется не только на большеугловых, но и на малоугловых субзеренных границах аустенита, образующихся при ГПД стали [13]. После ГПД металлов с г.ц.к. решеткой дислокационная субструктура может трансформироваться с образованием новых большеугловых межкристаллитных границ при динамических и статических процессах возврата и рекристаллизации [1, 14]. Из этого можно сделать вывод, что увеличение количества феррита при ГПД литой стали должно быть связано с формированием в аустените дислокационной субструктуры, являющейся местами зарождения α-фазы и зависящей от параметров ГПД и процессов рекристаллизации.

Поскольку доэвтектоидный феррит выделяется на межкристаллитных границах определенного строения, декорируя их, то представляло интерес по структуре ферритной сетки установить зависимость ее образования от ГПД и ТО во взаимосвязи с химической неоднородностью, вызванной дендритной кристаллизацией. Было определено отношение количества феррита во внутридендритных участках, содержащих меньше примесных элементов, к количеству феррита в междендритных участках, обогащенных примесными элементами (рис. 2, a).

Установлено, что образование доэвтектоидного феррита в междендрит-

«Стародубовские чтения - 2012»

ных областях, особенно в местах с наибольшей ликвацией, наблюдается реже и ширина его прослоек меньше, чем во внутридендритных участках (рис. 2, *б*). ГПД до 30% литой стали приводит к образованию феррита во внутридендритных участках в 1,5–2,5 раза больше, чем в междендритных. При степени ГПД 40–50% соотношение количества доэвтектоидного феррита во внутридендритных и междендритных участках близко к 1. Увеличение деформации до 60% снова приводит к росту указанного соотношения, т.е. количество доэвтектоидного феррита во внутридендритных.

Установленные особенности выделения доэвтектоидного феррита в зависимости от дендритного строения стали можно объяснить известными процессами линамической рекристаллизации при ГПЛ. Олнако причины периолического повторения динамической рекристаллизации мало изучены и полностью не объяснены [15]. Шикличность линамической рекристаллизации связывают с соотношением величины "критической" деформации и деформации, происходящей в ходе самой рекристаллизации, при осуществлении двух конкурирующих процессов – разупрочнения и упрочнения металлов. Считается, что разупрочнение происходит в наиболее интенсивно деформированных микрообластях, а упрочнение – в соселних менее искаженных микрообластях. Причины появления в стали соседствующих микрообластей с различной склонностью к леформации и рекристаллизации также ло конца не выяснены. Олнако известно, что рекристаллизация металлов зависит от содержания примесей в металлах. Так как дендритная кристаллизация стали приводит к неоднородному распределению C, Si, Mn и др. элементов, то это должно влиять на различную степень рекристаллизации аустенита и связанное с этим изменение количества лоэвтектоилного феррита. Химический состав аустенита (в первую очерель содержание углерода) определяет его способность к деформации а, следовательно, и процессам упрочнения, разупрочнения и рекристаллизации.

Исходя из вышеизложенного, можно представить, что небольшие степени ГПД (до 30%) стали приводят к образованию субграниц преимущественно во внутридендритных менее прочных (из-за меньшего содержания в углерода) и, поэтому, легкодеформируемых микрообластях. При ГПД 40–50% в этих участках развивается рекристаллизация, тогда как в междендритных участках (с повышенным содержанием углерода и большей прочностью) она не происходит или слабо выражена из-за их меньшей степени деформации и более высокой температуры рекристаллизации. При этом количество рекристаллизованных внутридендритных субграниц аустенита становится приблизительно равным количеству возникающих субграниц в междендритных участках. Увеличение степени деформации до 60% приводит к цикличности процесса, т.е. повторному насыщению дислокациями рекристаллизованных внутридендритных участков с формированием в них новых ферритообразующих субграниц, тогда как междендритные участки перестают быть подвержены дальнейшим субструктурным изменениям при существующих условиях деформации. Для про-

Строительство, материаловедение, машиностроение

должения насыщения дислокациями ликвационных междендритных участков, т.е. их дробления, необходимо изменять режим ГПД.

Нормализация, как самостоятельная операции ТО литой стали, так и в сочетании с предварительной ГПД приводит к формированию относительно равномерной феррито-перлитной структуры (рис. 2, ϵ ; 3, δ , ϵ) с размером зерен 17–22 мкм и количеством доэвтектоидного феррита 10–12%. Измельчение зерна и увеличение количества доэвтектоидного феррита при ТО литой и горячедеформированной стали связано, по-видимому, с возникновением и более равномерным распределением в объеме металла термических и фазовых напряжений. Это приводит к образованию в аустените относительно более равномерной и развитой субструктуры, которая наследственно связана со структурой перлита [10]. В результате этого в аустените после перекристаллизации стали количество ферритообраующих границ больше, а их распределение равномернее, чем после кристаллизации или ГПД. Это объясняет ранее не понятное увеличение в стали после ТО количества доэвтектоидного феррита и приближение его к равновесной концентрации [16].

Теоретически, после ГПД и последующей ТО количество большеугловых и субзеренных малоугловых границ, способствующих образованию доэвтектоидного феррита, должно быть больше, чем после просто ТО. Это должно быть связано с тем, что ГПД предварительно "прорабатывает", т.е. нарушает исходную упорядоченность (правильность) кристаллогеометрического строения стали в ликвационных зонах, формируя в них дислокационную субструктуру и создавая тем самым предпосылки к большему общему измельчению микроструктуры при дальнейшей ТО. Действительно, структура стали после совместного действия ГПД и ТО равномерней и несколько мельче, чем после только ТО (рис. 3). Распределение доэвтектоидного феррита во внутридендритных и междендритных участках при сочетании ГПД и ТО происходит значительно равномерней с соотношением его количества в этих областях близким к 1 (рис. 2, *a, в*).

Иногда прогнозирование свойств доэвтектоидных средне- и высокоуглеродистых сталей по размеру зерна, определяемого методом ферритной сетки (ISO 643, E 112, DIN 50601, ГОСТ 5639), бывает ошибочным [17]. Несоответствие свойств стали и ее структуры, например низкая ударная вязкость при малом размере зерна (при прочих равных условиях) может быть связано с превалирующим влиянием на свойства стали строения ее межкритсталлитных границ, по которым происходит разрушение. При этом, некоторые свойства разных границ одинаковы, например, – способность к образованию доэвтектоидного феррита. Имеющиеся микроструктурные отличия самого феррита (толщина сетки, ее сплошность и др.), обусловленные различным строением образующих его границ часто во внимание не принимаются. Следствием этого является то, что при визуально подобной микроструктуре (размеру зерна и количеству феррита) свойства стали могут быть разными.

«Стародубовские чтения - 2012»

Рис. 3. Первичная (*a*, *в*) и конечная (*б*, *г*) микроструктура стали с 0,59%С после: *a*, *б* – кристаллизации и ТО; *в*, *г* – 60% ГПД и ТО. *a*, *в* – ×50 (травлено в пикрате Na); *б*, *г* – ×500 (травлено в нитале)

Микроструктурные исследования выявляют еще одну особенность связи первичной дендритной структуры исследованной стали с ее конечной феррито-перлитной структурой, формирующейся после ГПД и ТО. При выбранной схеме ГПД (осадкой), моделирующей промышленный процесс деформации литой заготовки при производстве железнодорожных колес, в исследуемых образцах мало меняется исходная форма дендритов, оставаясь характерной для литой стали. Только при деформации 50 и 60% наблюдается уменьшение межосевых расстояний дендритов и происходит их ориентирование относительно направления прилагаемой нагрузки. При меньших степенях ГПД видимого изменения плотности дендритной структуры не происходит, что создает впечатление отсутствия деформации стали. Однако все степени ГПД приводят к изменению размеров зерен в стали, что свидетельствует о ее наличии. Во всем исследуемом диапазоне ГПД образуются зерна с относительно равноосной формой, неменяющейся при увеличении степени деформации и несовпадающей с ориентацией дендритов, даже при 50 и 60% ГПД. Для объяснения указанного явления требуется проведение дальнейших исследований.

Изменение микроструктуры литой колесной стали под действием ГПД и ТО приводит к с соответствующим изменениям ее свойств в зависимости от режимов обработки (рис. 4).

Повышение степени ГПД литой стали в интервале 20-60% приводит к повышению ее прочностных свойств в состоянии без ТО и практически не оказывает влияние на эти характеристики после последующей ТО (рис. 4, *a*). Связано это с тем, что прочность средне- и высокоуглеродистых сталей определяется, в первую очередь, дисперсностью перлита, как основной структурной составляющей, участвующей в их упрочнении во время холодной пластической деформации растяжением образцов при механических испытаниях. Микроструктура перлита и его межпластиночное расстояние в зависимости от режима обработки стали приведены на рисунках 5 и 6.

Рис. 4. Влияние степени ГПД на механические свойства колесной стали с 0,59% С: 1 – после ГПД, 2 – после ГПД и ТО

«Стародубовские чтения - 2012»

Рис. 5. Структура перлита в колесной стали с 0,59% С после: *а* – кристаллизации, *б* – кристаллизации и ТО, *в* – 60% ГПД, *г* – 60% ГПД и ТО

Величина среднего межпластиночного расстояния после ТО горячедеформированной стали приблизительно одинакова, что обусловлено близкими условиями распада аустенита при нормализации. Это подтверждает известные данные о том, что дисперсность перлита зависит больше от скорости охлаждения и температуры распада аустенита, чем от степени его ГПД [1]. Большие значения межпластиночного расстояния перлита в литой стали также связаны с условиями охлаждения после кристаллизации – меньшей скоростью охлаждения и высокой температурой распада аустенита.

Основной прирост $\sigma_{\rm B}$ (на 20%) и $\sigma_{0,2}$ (на 12%) происходит при 20–30% ГПД. При этом пластические свойства и ударная вязкость повышаются монотонно во всем исследуемом интервале величин ГПД (рис. 4, *в*-*д*). Такая зависимость характерна для стали после ГПД с ТО и без ТО. Значения δ_5 , ψ , и КСU образцов после ТО выше по сравнению с образцами, подвергнутыми только ГПД.

Повышение пластических свойств и ударной вязкости обусловлено уменьшением размера зерна аустенита под действием совместной с ГПД операции ТО и связано с описанными выше закономерностями влияния на эти процессы дендритной ликвации.

а

б

Рис. 6. Зависимость межпластиночного расстояния перлита в стали с 0,59% С от степени деформации ГПД без ТО (a) и с ТО (b)

Выводы:

Результаты выполненных исследований позволяют сделать следующий основной вывод. Образование межкристаллитных границ в аустените при ГПД и ТО, их кристалло-химическое строение, количество и сочетание зависит от химического состава и однородности аустенита, формирующегося при дендритной кристаллизации стали. Неоднородное распределение (ликвация) химических элементов при дендритной кристаллизация стали может оказывать существенное влияние на рекристаллизацию аустенита, конечную структуру и свойства стали.

Использованная литература

1. Бернштейн М.Л., Займовский В.А., Капуткина Л.М. Термомеханическая обработка стали. – М.: Металлургия, 1983. – 480 с.

2. Узлов И.Г., Савенков В.Я., Поляков С.Н. Термическая обработка проката. – К.: Техніка, 1981. – 158 с.

3. Хворинов Н.И. Кристаллизация и неоднородность стали. – М.: Машгиз, 1958 – 392 с.

4. Голиков И.Н., Масленков С.Б. Дендритная ликвация в сталях и сплавах. – М.: Металлургия, 1977. – 224 с.

5. Левченко Г.В., Дьоміна К.Г., Грушко П.Д. Вплив умов кристалізації на спадкоємну концентраційну мікронеоднорідність і механічні властивості гарячекатаного прокату // Металознавство та термічна обробка металів. – 2005. - № 2. – С. 54 – 58.

6. Кондратюк С.Є. Структуроутворення, спадковість і властивості литої сталі. – К.: Наукова думка, 2010. – 177 с.

7. Кристаллизация и первичная структура конструкционных сталей / А.И. Яценко, В.Е. Хрычиков, Т.С. Хохлова и др. – Д.: Журфонд, 2010. – 226 с.

8. Узлов И.Г., Бабаченко А.И., Кононенко А.А., Дементьева Ж.А. Влияние размера колесной заготовки и режимов ее пластической деформации на служебные свойства железнодорожных колес / Фундаментальные и прикладные проблемы черной металлургии. – 2006. – Вып. 13. – С. 238–244.

9. Левченко Г.В., Ершов С.В., Головко Д.С., Грицай Т.В. Влияние деформации блюма на структуру термообработанных железнодорожных осей // Вестник национального технического университета Украины "Киевский политехнический институт" Машиностроение – Вып. 53 – 2008. – С. 189-195.

10. Борисенко А.Ю., Кононенко А.А., Бабаченко А.И., Яценко А.И., Чухлеб В.Л., Ткач В.Н., Тараненко А.А., Кузьмичев В.М., Сухомлин В.И. Схемы и механизмы формирования феррито-перлитной структуры колесных сталей после кристаллизации, термической обработки и горячей пластической деформации // Металознавство та термічна обробка металів. – 2010. – № 2 (49). – С. 62-75.

11. Борисенко А.Ю., Кононенко А.А., Бабаченко А.И., Науменко Л.Д. Микроструктурные исследования формирования первичного зерна аустенита после кристаллизации углеродистых сталей с 0,5-0,7% С // Доповіді НАН України. – 2010. – № 9. – С. 70-77.

12. Большаков В.И., Лаухин Д.В. Полигонизация аустенита при контролируемой прокатке. – Д.: «Свидлер А.Л.», 2011. – 242 с.

13. Большаков В.И., Тихонюк А.Н., Миронова О.Ю., Сухомлин Г.Д. Формирование субструктуры при многократной горячей деформации аустенита // Металознавство та термічна обробка металів. – 1999. – № 3. – С. 41-47.

14. Горелик С.С. Рекристаллизация металлов и сплавов. – М.: Металлургия, 1978. – 568 с.

15. Новиков И.И. Теория термической обработки металлов. – М.: Металлургия, 1978. – 392 с.

16. Влияние механизма образования аустенита на его строение в первичной структуре сталей / А.И. Яценко, А.Ю. Борисенко, Н.И. Репина, П.Д. Грушко, А.А. Кононенко, В.К. Коваль // Строительтво, материаловедение, машиностроение: Сб. науч. трудов. Вып. 48, ч.1. – Дн-вск., ПГАСА, 2009.- С. 160.- 167.

17. О применении метода ферритной сетки для определения размера зерна аустенита в стали / А.Ю. Борисенко // Сбір. тез доповідей всеукраїнської науково-технічної конференції студентів і молодих учених "Молода академія 2010". – Дніпропетровськ, НМетАУ. – 2010. – Т. 2. – С. 210-211.