1) Сила P переносится с поверхности насыпи на поверхность скольжения (в точку приложения веса отсека G), и раскладывается на удерживающую и сдвигающую составляющие.

$$k = \frac{\sum (N_i \cdot tg\phi + cL_i) + P \cdot \sin \beta \cdot tg\phi}{\sum T_i + P \cdot \cos \beta}$$
(9)

где  $\beta$  – угол наклона силы к линии скольжения.

2) Расчёт коэффициента устойчивости по напряжениям, с учётом силы Р (без компенсирующего момента).

$$k = \frac{\sum \sigma \cdot tg\phi + c}{\sum \tau} = \frac{\sum_{i=I}^{n} (\sigma_{iQ} + \sigma_{P}) \cdot tg\phi + c_{i}}{\sum_{i=I}^{n} \tau_{iQ} + \tau_{P}}$$
(10)

где n – количество блоков.

3) Расчёт коэффициента устойчивости по напряжениям, с учётом силы Р с учётом компенсирующего момента (рассмотренная выше методика).

$$k = \frac{\sum \sigma \cdot tg\phi + c}{\sum \tau} = \frac{\sum_{i=I}^{n} (\sigma_{iQ} + \sigma_{P} - \sigma_{M}) \cdot tg\phi + c_{i}}{\sum_{i=I}^{n} \tau_{iQ} + \tau_{P}}$$
(11)

По приведенным выше формулам в приложении EXCEL были сделаны расчёты для всех сочетаний следующих исходных данных:

Высота откоса -2 м, 8м, 14м;

Уклон откоса – 1:1,5 при высоте 2 м, 1:2 – при высоте 8 и 14 м;

 $\gamma = 16 \text{ kH/m}^3$ ,  $19 \text{ kH/m}^3$ ,  $22 \text{ kH/m}^3$ ;

 $\varphi = 6^{\circ}, 18^{\circ}, 30^{\circ};$ 

c = 9 кПа. 45 кПа. 81 кПа:

P = 50 кH, 200 кH, 400 кH при высоте 2 и 8 м;

Р =50 кН. 300 кН. 600 кН при высоте 14 м.

Угол наклона силы P к горизонту  $\delta - 10^{\circ}$ ,  $50^{\circ}$ ,  $80^{\circ}$ , а также при угле равном углу наклона поверхности скольжения к горизонту.

#### Выводы.

На основании проведенных расчётных исследований были получены следующие результаты:

Строительство, материаловедение, машиностроение

- 1. Метод отсеков, в котором производится учёт внешней нагрузки эквивалентным слоем грунта даёт увеличение коэффициента устойчивости по сравнению с учётом внешней нагрузки в виде момента, причём значительное увеличение достигается при высоких откосах, и незначительное (до 20 %) при высоте более восьми метров.
- 2. При учёте внешней нагрузки в виде момента (8) наименьшее значение коэффициента устойчивости достигается при условии равенства углов наклона силы и поверхности скольжения к горизонту. С увеличением угла наклона действующего усилия коэффициент устойчивости уменьшается в случае замены усилия эквивалентным слоем грунта. При расчёте по методам (9-9) коэффициент устойчивости при прочих равных условиях с увеличением угла наклона силы к горизонту возрастает.
- 3. Учёт изгибающего момента приложенного по поверхности скольжения уменьшает коэффициент устойчивости при угле наклона действующего усилия до 80°. Учёт изгибающего момента по поверхности скольжения целесообразно производить при значительной высоте насыпи более 8 метров, при незначительной высоте разница в значениях коэффициента устойчивости составляет величину близкую к принятой точности инженерных расчётов.
- 4. При переносе внешнего воздействия на поверхность скольжения и сравнении с методом момента приложенного в зоне воздействия нагрузки при высоте более восьми метров коэффициенты устойчивости приблизительно равны, а при меньших высотах и угле наклона воздействия силы более 80° разница в значениях коэффициента устойчивости составляет более 5 %.

### ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА

- А.М. Караулов Поставка и решение задачи устойчивости откосов и склонов как задачи линейного программирования // Основания и фундаменты, механика грунтов №3 – М. – 2005. – С.2-6.
- Устойчивость слоистых грунтовых сооружений на деформируемом основании. Монография / Рубан О.А. Днепропетровск, ПГАСиА, 2005 – 182 с.

## УЛК 624

# ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ КОНСТРУКТИВНЫХ ЭЛЕМЕНТОВ МНОГОЭТАЖНЫХ ЗДАНИЙ ИЗ ЖЕЛЕЗОБЕТОНА

\* Н.А. Швец к.т.н., \*\* И.И. Перегинец, инж., \*\*\* Н.В. Савицкий д.т.н. \*Днепропетровский облсовет,

\*\*Международная строительная копания «Канада – Украина»,

**Постановка задачи.** По уровню технических и экономических показателей бетон и железобетон остаются по прежнему основными

52.7

<sup>\*\*\*</sup>Приднепровская государственная академия строительства и архитектуры

конструкционными материалами. Они занимают приоритетные места в общей структуре мирового производства строительной продукции. Получив название «материал XX века» железобетон благодаря своим уникальным свойствам успешно занял свою нишу и постоянно расширяет его границы в рядах строительной продукции, заменив собой в большинстве случаев дорогостоящий металл.

В настоящее время развиваются различные архитектурно-конструктивнотехнологических системы, как по используемому конструкционному материалу (металл, железобетон, кирпич, бетон, дерево), по различию в конструкционных системах (каркасная, стеновая, ствольная, оболочковая, комбинированная), способам возведения (сборные, монолитные, сборномонолитные). Однако до сих пор нету обобщающих работ в которых был бы проведен анализ технико-экономической эффективности различных конструктивных систем.

Целью настоящей работы является обобщение имеющихся данных о технико-экономических показателях различных конструктивных систем многоэтажных зданий из железобетона для выбора наиболее рациональных.

Изложение основного материала. На начало 90-х годов в СССР затраты на устройство соответствующих конструктивов и инженерных систем для жилых зданий распределялись в соответствии с данными, приведенными в табл. 1.

Учитывая изменившиеся соотношения в стоимости материалов, зарплаты, эксплуатации машин и механизмов, энергии, приближении цен к мировым, очевидно, соотношения в стоимости будут приближаться к мировым. Показательными в этом отношении являются данные по стоимости строительства 1 м<sup>2</sup> жилья в США и Японии (табл. .2):

Таблииа 1 Стоимость укрупненных конструктивных элементов

| Наименование элементов здания                                | Удельные веса по сб. № 28, % |
|--------------------------------------------------------------|------------------------------|
| 1. Фундаменты                                                | 4                            |
| 2. Стены и перегородки                                       | 43                           |
| 3. Перекрытия                                                | 11                           |
| 4. Крыша и кровля                                            | 7                            |
| 5. Полы                                                      | 11                           |
| 6. Окна и двери                                              | 6                            |
| 7. Отделочные покрытия                                       | 5                            |
| 8. Внутренние сантехнические и электротехнические устройства | 10                           |
| 9. Прочие (лестницы, балконы, остальное)                     | 3                            |
| Всего                                                        | 100                          |

Строительство, материаловедение, машиностроение

Таблица 2 Стоимость элементов строительства 1 м² жилья в США и Японии, %

| Виды работ                                      | Сан-Франциско<br>(США) | Киото (Япония) |
|-------------------------------------------------|------------------------|----------------|
| Фундаменты (основания)                          | 4,6                    | 4,2            |
| Каркас здания                                   | 17,3                   | 17,1           |
| Внешние стены                                   | 22,1                   | 16,0           |
| Кровля                                          | 1,3                    | 1,3            |
| Внутренние работы                               | 16,3                   | 18,4           |
| Проводящие системы                              | 3,9                    | 2,0            |
| Инженерное оборудование                         | 15,4                   | 12,4           |
| Электрооборудование                             | 5,8                    | 6,1            |
| Строительное оборудование                       | 1,1                    | 2,0            |
| Работы по обустройству<br>строительной площадки | 3,6                    | 2,3            |
| Общие расходы                                   | 8,6                    | 18,2           |
| Всего                                           | 100                    | 100            |

Примечание: стоимость строительства 1м<sup>2</sup> в Сан-Франциско – 1119,89 долларов США, в Киото – 1858,01 долларов США.

Проектные решения жилых зданий должны учитывать местные демографические, климатические, инженерно-геологические и материальнотехнические условия строительства. Конструктивные и технологические решения зданий с применением бетона и железобетона должны, как правило, обеспечивать разнообразие объемно-планировочных решений при минимуме дисконтированных затрат.

Достигнутые контрольные показатели расхода стали, кг/м<sup>2</sup> общей приведенной площади при строительстве монолитных зданий в бывшем СССР приведены в табл. 3.

Таблииа 3. Расход стали в жилых зданиях на 1 кв. м. общей приведенной площади в зависимости от этажности зданий и климатического района строительства

|           | Климатический район                         |    |  |  |
|-----------|---------------------------------------------|----|--|--|
| Этажность | IIиIII                                      | IV |  |  |
|           | Расход натуральной стали, кг/м <sup>2</sup> |    |  |  |
| 5         | 23                                          | 24 |  |  |
| 9         | 23                                          | 24 |  |  |
| 12        | 28                                          | 31 |  |  |
| 16        | 34                                          | 38 |  |  |
| 20        | 53                                          | 59 |  |  |

расходах стали в высотных зданиях по опыту строительства США.

Таблица 4. Расход стали в зданиях на 1 кв. м. общей площади зависимости от этажности зданий

| этажности зоании |        |                   |                   |                        |  |  |  |
|------------------|--------|-------------------|-------------------|------------------------|--|--|--|
| Год              | Число  | Отношение         | Расход            | 2,,,,,,,               |  |  |  |
| строительства    | этажей | высоты к металла, |                   | Здание                 |  |  |  |
| •                |        | ширине            | кг/м <sup>2</sup> | 7                      |  |  |  |
| 1971             | 10     | 5,1               | 30,7              | Лоу Инкам Хаузинг,     |  |  |  |
|                  |        | ,                 |                   | Броктон, Массачусетс   |  |  |  |
| 1969             | 26     | 4                 | 127               | Алкоа Билдинг, Сан-    |  |  |  |
|                  |        | -                 |                   | Франциско              |  |  |  |
| 1965             | 30     | 5,7<br>4,1        | 185               | Сивик Сентер, Чикаго   |  |  |  |
| 1970             | 41     | 4,1               | 102               | Бостон Билдинг, Бостон |  |  |  |
| 1957             | 42     | 5,1               | 137               | Сигрэм Билдинг, Нью-   |  |  |  |
| 1937             | 42     | 3,1               | 137               | Йорк                   |  |  |  |
| 1971             | 57     | 6.1               | 87                | IDS Сентер,            |  |  |  |
| 19/1             | 37     | 6,1               | 87                | Миннеаполис            |  |  |  |
| 1062             | 60     | 7.2               | 269               | Чейз Манхэттен, Нью-   |  |  |  |
| 1963             | 00     | 7,3               | 268               | Йорк                   |  |  |  |
| 1969             | 60     | 5.7               | 105               | Ферст Нэшенл Бэнк,     |  |  |  |
| 1969             | 00     | 5,7               | 185               | Чикаго                 |  |  |  |
| 1071             | (1     | ( )               | 146               | US Стил Билдинг,       |  |  |  |
| 1971             | 64     | 6,3               | 146               | Питтебург              |  |  |  |
| 1060             | 100    | 7.0               | 1.45              | Джон Хенкок Сентер,    |  |  |  |
| 1968             | 100    | 7,9               | 145               | Чикаго                 |  |  |  |
| 1020             | 102    | 0.2               | 206               | Эмпайр Стейт Билдинг,  |  |  |  |
| 1930             | 102    | 9,3               | 206               | Нью-Йорк               |  |  |  |
|                  | 400    | - 1               |                   | Сирс энд Роенбук,      |  |  |  |
| 1974             | 109    | 6,4               | 161               | Чикаго                 |  |  |  |
|                  |        |                   |                   | Уорлд Трэйд Сентер,    |  |  |  |
| 1972             | 110    | 6,9               | 180               | Нью-Йорк               |  |  |  |
|                  | l      |                   | l                 | TIDIO TIOPIN           |  |  |  |

На технико-экономические показатели в значительной степени влияют конструктивные системы (стеновая, каркасная, с продольными несущими стенами, с поперечными несущими стенами, рамная, связевая, рамно-связевая) и способ возведения (сборные, монолитные, сборно-монолитные). Некоторые обобщающие данные о влиянии конструктивных систем на технико-экономические показатели приведены на рис. 1 [1]/

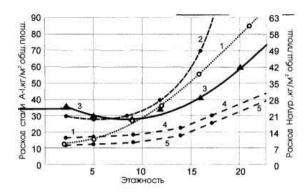



Рис. 1. Зависимость расхода стали от высоты многоэтажных зданий:

- 1 панельное здание с поперечными несущими стенами;
- 2 то же с продольными несущими стенами;
- 3 то же с продольными и поперечными несущими стенами;
- 4— здание со сборно-монолитным железобетонным каркасом и плоскими дисками перекрытия без преднапряжения;
  - 5 то же с преднапряженными дисками перекрытий

На основе проведенного функционально-стоимостного анализа существующих и развивающихся архитектурно-конструктивно-технологических систем, их отдельных подсистем, изделий и конструкций, а также их характеристик, выделены наиболее значимые, определяющие затраты на возведениие здания — стены и каркас здания. В их число входят и перекрытия, стоимость которых составляет до 30% общих затрат на возведение здания.

Обобщающие данные о технико-экономических показателях разработанных типов перекрытий в различных организациях с учетом данных приведенных в работе [2], представлены в табл.5.

Таблица 5. Обобщенные сравнительные технико-экономические показатели на устройство ж.б. каркаса здания (на 1 м² общей площади)

|                  |                                       | -                             |                       | Расходы                                     |                           |              |
|------------------|---------------------------------------|-------------------------------|-----------------------|---------------------------------------------|---------------------------|--------------|
| № <u>№</u><br>пп | Тип конструкции и система каркаса     | Пролеты или ячейки каркаса, М | Разработ-<br>чик      | цемента,<br>прове-<br>денного к<br>М400, кг | бетона,<br>м <sup>3</sup> | стали,<br>кг |
| 1                | Безригельный каркас ненапряж. монолит | до 6,0                        | Традиц.<br>решение    | 102                                         | 0,25                      | 20,9         |
| 2                | Полносборная<br>система ПЖБК          | до 6,0                        | 3AO<br>«MBM-<br>ΓΕΟC» | 70,0                                        | 0,201                     | 17,5         |

532

531

## Строительство, материаловедение, машиностроение

|                 |                                                                                   | -                             |                  | Расходы                                     |                           |              |
|-----------------|-----------------------------------------------------------------------------------|-------------------------------|------------------|---------------------------------------------|---------------------------|--------------|
| <b>№№</b><br>ПП | Тип конструкции и система каркаса                                                 | Пролеты или ячейки каркаса, М | Разработ-<br>чик | цемента,<br>прове-<br>денного к<br>М400, кг | бетона,<br>м <sup>3</sup> | стали,<br>кг |
|                 | разрушенным                                                                       |                               |                  |                                             |                           |              |
| 18              | Система ЖБВ-<br>СБМ<br>Преднапряженный сборно-монолит-<br>ный безригельный каркас | 1,2X1,2                       | ниижь            | 65,0                                        | 0,16                      | 12,0         |
| 19              | -//-                                                                              | 9,0x9,0                       | ниижь            | 67,0                                        | 0,17                      | 17,0         |
| 20              | -//-                                                                              | 12,0x12,0                     | ниижь            | 80,0                                        | 0,23                      | 22,0         |
| 21              | Монолитный<br>безригельный<br>каркас                                              | 8,0x8,0                       | ПГАСА            |                                             | 0,19                      | 15,1         |

### Выводы.

- 1. На основе проведенного функционально-стоимостного анализа существующих и развивающихся архитектурно-конструктивно-технологических систем, их отдельных подсистем, изделий и конструкций, а также их характеристик, выделены наиболее значимые, определяющие затраты на возведениие здания стены и каркас здания, которые составляют до 40% затрат на возведения здания, включая отделку и устройство инженерных коммуникаций.
- 2. На технико-экономические показатели в значительной степени влияют конструктивные системы зданий (стеновая, каркасная, с продольными несущими стенами, с поперечными несущими стенами, рамная, связевая, рамно-связевая) и способ возведения (сборные, монолитные, сборномонолитные). В настоящее время наиболее рациональной является каркасная система с разделением несущих и ограждающих функций.

## ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА

- 1. Современные конструктивно-технолгические системы зданий и строительные материалы: Сб. трудов БелНИИС/ Минск, Изд-во «Редакция журнала «Тыдзень», 1997.- 96 с.
- 2. Асатрян В.Г., Асатрян Л.В., Веснин Б.Г. Инвестиционная привлекательность применения железобетонно-вантовых конструкций при возведении каркасных зданий различного назначения//Бетон и железобетон пути развития/ П Всероссийская (Международная) конференция. 5-9 сентября 2005 г. Москва; в 5 томах. НИИЖБ 2005, том 2. Секционные доклады. Секция «Железобет. конструкции зданий и сооружений».- 776 с.