УДК: 669

ПРОЧНОСТЬ И НАДЕЖНОСТЬ КОНСТРУКЦИОННЫХ МЕТАЛЛОВ И СПЛАВОВ

Ю. Я. Мешков, д. т. н., член-кор. НАН Украины

ИМФ им. Г.В. Курдюмова НАН Украины, г. Киев

1. Вступление

Понятие надежности обычно применяется к характеристике изделий и сооружений в целом, а не применительно к металлам, используемым в конструкциях. Тем не менее, вполне очевидным является то обстоятельство, что надежность любой конструкции становится проблематичной, если она собрана из заведомо хрупкого материала, поскольку хрупкость исключает возможность надежного применения сплава в элементах конструкции (ЭК), испытывающих нагружение растяжением или изгибом. В этом смысле имеются основания говорить о проблеме силовой надежности самого металла или сплава в связи с его склонностью к проявлению хрупкости. Главным признаком силовой ненадежности хрупкого сплава служит недопустимость любой его перегрузки выше предела прочности, особенно перегрузки, локализованной в зонах концентрации напряжений. Лишь способность гасить локальные и, разумеется, глобальные силовые перегрузки металла обеспечивает надежность использования металлов, обладающих определенной пластичностью, в изделиях и сооружениях. Практической проблемой является лишь то, что нормирование показателей свойств пластичности или вязкости применяемых конструкционных сталей и сплавов не отражает непосредственно их способность гасить нежелательные перегрузки, отчего эти характеристики - относительное поперечное сужение при разрыве образца ψ_{κ} или величина удельной работы разрушения образца с надрезом KCV (KCU) – не могут использоваться в качестве характеристик инженерного расчета наряду с показателями прочности металла. А без такого расчета технически грамотного обеспечения надежности конструкции ожидать не приходится, в силу чего непредвиденные катастрофические хрупкие разрушения крупных металлических сооружений и конструкций в истории техники случались неоднократно [1; 2].

В настоящей работе ставится задача изыскать такой показатель механических свойств металла, который в количественной форме отражал бы демпфирующие возможности пластичного металла гасить в нем нежелательные перегрузки, превышающие предел текучести $\sigma_{0,2}$, что обеспечивает металлу определенную защиту от хрупкости. Для этого потребуется несколько расширить традиционное рассмотрение свойства прочности металлических материалов.

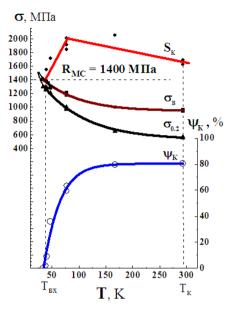
2. Хрупкость металлов как порождение их излишней прочности

В основе предлагаемой концепции силовой надежности металлов лежит расширенная трактовка свойства прочности.

Прочность твердого тела означает свойство оказывать сопротивление деформированию (т. е. изменению формы тела) под действием приложенных

сил. В отличие от аморфных твердых тел (стекло), металлы имеют два вида прочности:

- **1.** Прочность как упругое сопротивление деформированию (т.е. обратимое деформирование);
- **2.** Прочность как сопротивление упругопластическому деформированию (т.е. сопротивление необратимому, остаточному деформированию).


Окончание каждой стадии деформирования означает достижение своего критического уровня прочности:

- Первая критическая прочность металла переход от упругой к пластической стадии, т. е. начало пластической стадии можно назвать начальной (стартовой) характеристикой прочности σ_s . Сюда относятся технический предел текучести $\sigma_{0,2}$ или напряжение деформирования на любой другой стадии начальной текучести, если она имеет какой-нибудь физический смысл, например, прочность при критической деформации сталей e = 0.02 (2%), обозначаемая σ_2 [3].
- Вторая критическая прочность σ_f соответствует окончанию пластической стадии. Это конечная прочность или прочность разрушения металла σ_f .

Интервал между двумя критическими прочностями $\Delta \sigma = \sigma_f - \sigma_s$ можно принять за меру способности металла гасить силовые перегрузки за счет его пластичности, т.е. как свойство, придающее металлу определенную силовую надежность. Чем больше интервал $\Delta \sigma$, тем лучше металл защищен от пагубного воздействия локальных перенапряжений, создаваемых концентраторами и другими источниками неоднородных силовых полей в изделии (изгибные деформации балки и т.п.). Так силовая надежность металла передается надежности конструкции в целом.

Однако упомянутый интервал межкритических прочностей металла в условиях линейного растяжения $\Delta \sigma = \sigma_f - \sigma_s$ не может служить количественной мерой надежности металла в общем случае сложного напряженного состояния (СНС), когда критические значения прочностей σ_s и σ_f существенно отличаются от таковых для простого растяжения [4].

Обратим внимание на условия, которые вообще могут повлиять на величину интервала $\Delta\sigma$. Прежде всего, фактором, уменьшающим величину $\Delta\sigma$, служит снижение температуры (рис. 1), когда повышение начальной прочности σ_s (предел текучести $\sigma_{0,2}$) сопровождается менее резким повышением, а в области криогенных температур прямым понижением конечной прочности σ_f (напряжение разрушения S_κ).

Рис. 1. Температурная зависимость характеристик прочности и пластичности стали при одноосном растяжении (ст. 15Х2НМФА): $\sigma_{0,2}$ – начальная прочность (предел текучести); S_{κ} – конечная прочность (напряжения разрушения); ψ_{κ} – относительное сужение в "шейке" при разрыве образца.

Особый смысл имеет предельное значение $\Delta \sigma = 0$, когда начальная и конечная прочности металла совпадают. В этот момент пластичность металла $\psi_\kappa \to 0$, т. е. наступает момент хрупкости. Физический смысл понятия "предельная прочность металла" σ_{np} состоит в том, что σ_{np} означает прочность в таком состоянии металла, когда его конечная прочность σ_f (прочность разрушения) реализуется на металле с той же структурой, что и начальная прочность σ_s [5]. Так разрушаются только хрупкие тела. Поэтому σ_{np} означает по сути хрупкую прочность металла R_x . Такое понимание смысла предельной прочности σ_{np} особенно важно в связи с тем, что условие разрушения металла при неизменной исходной структуре — (т. е. $\sigma_s = \sigma_f = \sigma_{np} = R_x$) может возникнуть не обязательно при очень низкой температуре T_{BX} (рис. 1), но и при более высоких температурах, если предел текучести этого же сплава в результате, например, старения или нейтронного облучения [6], или в результате механического стеснения деформации трехосным напряженным состоянием

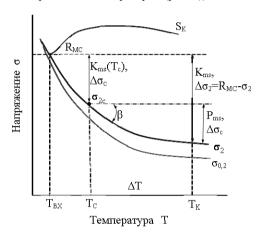
 σ_s , окажется существенно повышенным, так, что условие $\sigma_s = \sigma_{np}$ в виде $\sigma_2 = \sigma_{2c}$ будет выполнено при более высокой температуре T_c (рис. 2). Следовательно, для таких факторов упрочнения сплава (к ним еще следует добавить фактор динамического повышения прочности металлов) традиционная схема Иоффе, объясняющая охрупчивающее действие стеснения деформации в условиях СНС, сохраняет свою справедливость и может оказаться полезной при анализе роли прочности как фактора охрупчивания металлического сплава.

Из вышесказанного следует, что, в отличие от случая линейного напряженно-деформированного состояния (НДС), величину межкритического интервала прочности сплава $\Delta\sigma$ в общем случае сложного НДС следует исчислять как разницу между предельной σ_{np} и начальной σ_s прочностями. Но учитывая, что предельная прочность определяется как хрупкая прочность металла, для обозначения которой применяется физически обоснованная характеристика R_{MC} (сопротивление микросколу — наименьшее значение хрупкой прочности при разрушении с критической деформацией $e\approx 2\%$, [3, 7]) $\Delta\sigma$ будет:

$$\Delta \sigma = R_{MC} - \sigma_2 \,. \tag{1}$$

В обозначении интервала $\Delta \sigma$ в качестве начальной прочности используется прочность металла σ_2 при степени деформации e=2%.

Из (1) видно, что способность металла "гасить" упругие перенапряжения и не допускать реализации хрупкого состояния ($\Delta\sigma=0$) целиком определяется величиной $\Delta\sigma>0$, т.е. уровнем текущей начальной прочности металла σ_2 , который зависит от многих факторов внешнего воздействия на металл — температуры, динамики нагружения, жесткости НДС, радиационного воздействия, при которых предельная прочность ($\sigma_{np}=R_{MC}$) остается практически неизменной [7]. Таким образом, хрупкость металла, по сути, всегда порождается излишне большой (в сравнении с σ_{np} (R_{MC})) прочностью металла или сплава. Поэтому внутренние резервы защиты металла от хрупкости следует искать, в первую очередь, в самой прочности металла, а именно в величине межкритического интервала его прочностей $\Delta\sigma=R_{MC}-\sigma_2$. Ранее, в работах [5; 8] было предложено в качестве меры сопротивления переходу из пластичного в хрупкое состояние использовать эти же показатели прочности R_{MC} и σ_2 в виде характеристики механической стабильности K_{ms} :


$$K_{ms} = \frac{R_{MC}}{\sigma_2} \ . \tag{2}$$

Коэффициент механической стабильности $K_{\it ms}$ по физическому смыслу отражает то же свойство металла, что и межкритический интервал $\Delta\sigma$ по (1), но в иной, относительной, форме исчисления и поэтому удобен для его сопоставления непосредственно с параметрами НДС – жесткостью НДС [4; 6] или упругим перенапряжением в зоне концентрации напряжений.

Величина интервала $\Delta \sigma$ удобна для анализа проблемы хрупкости в параметрах прочностного состояния металла, которые в схеме Иоффе непосредственно и очень наглядно связаны с таким важным свойством металла, как его хладостойкость ΔT :

$$\Delta T = T_{\nu} - T_{c} \,. \tag{3}$$

(T_{κ} – комнатная температура, K; T_{c} - критическая температура хрупкости в испытаниях образца с концентратором (рис. 2)).

Рис. 2. Влияние концентрации напряжений на основные прочностные по-казатели силовой надежности стали. K_{ms} — коэффициент механической стабильности (КМС) при $T=T_{\kappa}$; K_{msc} — критический КМС при $T=T_{c}$; P_{ms} — остаточный КМС металла в образце с концентратором при $T=T_{\kappa}$; R_{MC} — предельная (хрупкая) прочность стали; σ_{2c} — критическая (хрупкая) прочность стали в образце с концентратором; σ_{2} — прочность стали при степени деформации 2%; $\Delta \sigma = R_{MC} - \sigma_{2}$ — прочностной интервал силовой надежности стали (изломостойкость); $\Delta \sigma_{r}$ — остаточная изломостойкость стали в образце с концентратором; $\Delta T = T_{\kappa} - T_{c}$ — температурный интервал хладостойкости образца с концентратором.

3. Влияние прочности на критическую температуру хрупкости T_c стали

Температурно-прочностная зависимость свойств стали (рис. 2) при условии, что характеристика начальной (σ_2) и конечной (предельной) σ_{np} прочностей отражают свойства сплава с одной и той же структурой (т. е. структурой, не искаженной пластической деформацией в ходе нагружения до уровня σ_{np}), определяет важнейшие закономерности хрупко-пластических переходов

в сплавах при различных вариантах воздействия на уровень начальной прочности σ_2 сплава. Рассмотрим, например, охрупчивающее действие концентратора напряжений (надрез, трещина и т. д.).

Критическая температура хрупкости металла T_{BX} (рис. 2) под действием концентратора напряжений смещается вверх до температуры T_c , а хрупкая прочность металла R_{MC} соответственно падает до уровня σ_{2c} . Снижение хрупкой прочности под действием концентратора на величину $\Delta\sigma_c=R_{MC}-\sigma_{2c}$ есть основной эффект охрупчивания, который концентратор оказывает на металл. Охрупчивающую "силу" концентратора можно оценивать величиной $\Delta\sigma_c$, но удобнее использовать критический коэффициент механической стабильности K_{msc} при температуре T_c :

$$K_{msc} = \frac{R_{MC}}{\sigma_{2s}} \,, \tag{4}$$

который в сочетании с исходным значением K_{ms} металла при $T=T_{\kappa}$ образует остаточную величину механической стабильности образца с концентратором P_{ms} :

$$P_{ms} = \frac{K_{ms}}{K_{msC}} \,. \tag{5}$$

Оставшаяся после испытания образца с надрезом часть стабильности металла P_{ms} при комнатных температурах несет важную информацию об еще имеющихся у металла резервах оказывать дальнейшее сопротивление охрупчиванию, например, в форме запаса хладостойкости металла ΔT (3).

Другой способ оценки резерва стойкости против охрупчивания сплава в образце с концентратором возможен в форме разности прочностей σ_{2c} и σ_{c} :

$$\Delta \sigma_r = \sigma_{2c} - \sigma_2 \,, \tag{6}$$

которую можно связать с параметром P_{ms} , вынеся σ_2 в (6) за скобки:

$$\Delta \sigma_r = \sigma_2 \left(\frac{\sigma_{2c}}{\sigma_2} - 1 \right) = \sigma_2 \left(P_{ms} - 1 \right). \tag{7}$$

Параметр $\Delta\sigma_r$ имеет смысл предельно допустимого резерва возможного увеличения прочности σ_2 данного сплава с тем, чтобы образец с исследуемым надрезом имел температуру T_c ниже комнатной T_κ (т. е. $\Delta T > 0$), т.е. температура хрупкости T_c образца с концентратором в интервале ΔT контролируется исключительно исходным уровнем прочности (σ_2) металла. На этот уровень прочности могут влиять факторы температуры, старения, облучения и т.п., которые могут сдвинуть температуру T_c в интервале ΔT вплоть до комнатной. Интервал $\Delta\sigma_r$ есть защитный прочностный резерв сплава, предохра-

няющий его в условиях испытания с концентратором от возможности хрупкого разрушения в интервале температур хладостойкости данного образца ΔT .

Из рисунка 2 видно, что температурный (ΔT) и прочностной ($\Delta \sigma_r$) интервалы однозначно связаны между собой как тангенс угла в условном криволинейном треугольнике (β):

$$\overline{\beta} \approx \frac{\Delta \sigma_r}{\Delta T}$$
. (8)

(Здесь $\overline{\beta}$ — тангенс условного угла в вершине T_c прямоугольного треугольника (рис. 2), у которого криволинейная гипотенуза приближенно заменена прямой).

Из (8) имеем:

$$\Delta T \approx \frac{\Delta \sigma_r}{\overline{\beta}} \,. \tag{9}$$

Зная темп температурной зависимости прочности стали хотя бы оценочно ($\overline{\beta}$), по (9) можно прогнозировать ожидаемую температуру хрупкости при испытаниях образцов с надрезом T_c , если данный метод испытаний заранее был откалиброван, т.е. в серии экспериментов установлено характерное для данного вида надреза значение показателя охрупчивающей силы $K_{\it msc}$ (см. формулу 4).

Таблица I Пример расчетной оценки критической температуры T_c по результатам ударных испытаний на образцах Шарпи ($K_{msC}=1,7$) по [9]

		σ ₂ , ΜΠα		P_{ms} (расчет при $K_{msc}(T_C)=1.7)$	P _{ms} (эксп.)	ΔΤ		T _C , ⁰ С (эксп.)	
10Г2ФБ	210	360	2,17	1,28	1,28	80	-60	-70	101
09Γ2	390	515	1,96	1,15	1,11	57	-37	-45	57
15Г2АФ	330	490	1,90	1,12	1,04	20	0	-10	20
10ХСНД	680	760	1,97	1,16	1,15	114	-94	-96	114
12ХН3МФ	910	975	1,85	1,09	1,09	88	-68	-80	88
12ХН3МФ	940	1000	1,89	1,10	1,10	100	-80	-92	100

Так, в работе [9] было показано, что при определении температуры хрупкости T_c на ударных образцах с надрезом по Шарпи величина параметра K_{msc} для типичных конструкционных сталей в широком интервале критических температур T_c (от 150 K до 300 K), остается практически постоянной $K_{msc}\approx 1,7\pm 0,1$, что позволяет использовать данное значение K_{msc} в расчетах величины остаточной стабильности P_{ms} по (5), а, следовательно, и $\Delta\sigma_r$ по (7),

откуда по (9) определяется ожидаемое значение показателя хладостойкости стали ΔT при известном среднем значении параметра $\overline{\beta}\approx 1$ МПа/град. (таблица 1).

Указанная выше таблица приводится лишь для иллюстрации возможностей использования концепции механической стабильности не только для расчетной оценки хладостойкости сплавов, но и для подтверждения возможности обоснования принципиально нового подхода к решению проблемы силовой надежности металлов и сплавов в элементах конструкции. Особенностью этого подхода является опора на анализ основного механического свойства металла – его прочности, не только как выразителя *несущей способности* элемента конструкции ($\sigma_{0,2}$, σ_2), но и как защитника от нежелательных (особенно локальных) силовых перегрузок ($\Delta \sigma$ и $\Delta \sigma_r$), т.е. как гаранта силовой належности металла.

4. Заключение

В настоящей работе общетехническая проблема силовой надежности металлических сплавов рассматривается исключительно под углом зрения ключевой роли свойства прочности и его базовых механических характеристик начальной, конечной, предельной прочностей (σ_2 , S_{κ} , $\sigma_{np} = R_{MC}$) и прочно- $(\Delta \sigma = R_{MC} - \sigma_2)$ стного интервала силовой надежности сплава $\Delta \sigma_r = \sigma_{2c} - \sigma_2$). В таком подходе традиционные свойства (вязкость, пластичность) оказываются не определяющими свойствами для таких проявлений как хрупкость или вязкость несущих элементов конструкций, а следствием главного носителя надежности - прочностного интервала силовой надежности ($\Delta \sigma$ и $\Delta \sigma_r$). Этот показатель свойств настолько важен для металлических сплавов, что заслуживает отдельного термина для своего обозначения, как особого механического свойства металла, выполняющего ту же защитную функцию для металла, что и вязкость или пластичность металла, но только в своей специфической, прочностной форме, что принципиально важно для использования ее в современных инженерных расчетах.

На наш взгляд, прочностный интервал силовой надежности $\Delta \sigma$ мог бы получить название свойства изломостойкости (V) по аналогии со свойством хладостойкости ΔT , однозначно связанным с $\Delta \sigma$ по (9). Выражение защитной функции от хрупкости в свойстве изломостойкости V, в отличие от хладостойкости ΔT , является более общим, т. к. прочностные свойства металлов и прочностные характеристики этих свойств весьма обширны и разнообразны, поддаются различным формам анализа и сопоставления друг с другом, и, наконец, просто богаче по своему физическому (и структурному!) содержанию. Именно в этом заключаются несомненные перспективные возможности использования характеристик изломостойкости для анализа и обеспечения силовой надежности механических свойств и металлоконструкций.

Выволы

- 1. Силовая надежность металла в части его защищенности от хрупкости в конструкции целиком определяется показателями его прочности, а именно его основными характеристиками этого свойства начальной прочностью (σ_2), предельной (хрупкой) прочностью (R_{MC}) и прочностным интервалом между ними $\Delta \sigma = R_{MC} \sigma_2$ (изломостойкостью V).
- 2. Чем выше изломостойкость V, чем лучше металл защищен от пагубного действия локальных перенапряжений в условиях неоднородных НДС, вызывающих проявление хрупкости, т. е. тем выше силовая надежность металла в конструкции.
- 3. Инженерные решения проблемы силовой надежности сплавов и элементов конструкций следует искать, опираясь на прочностные показатели свойств металла (изломостойкость V, механическую стабильность K_{ms} , P_{ms}), а не на малоэффективные показатели вязкости (КСV) или пластичности (ψ_{κ}).
- 4. Ресурс силовой надежности металла заключен в резерве его изломостойкости $V = \Delta \sigma = R_{MC} \sigma_2$ или остаточной изломостойкости $V_r = \Delta \sigma_r = \sigma_{2c} \sigma_2$ для образца с концентратором (надрезом, трещиной).
- 5. Силовая изломостойкость V однозначно определяет температурную хладостойкость при любом виде испытаний на хрупкость с определением критической температуры T_c .

Список использованных источников

- 1. International Institute of Welding, Casebook of Brittle fracture failure, Doc. N_2 IX -753-71, 1971, 78 p.
- 2. Броек Д. Основы механики разрушения / Пер. с англ. М. : Высшая школа, 1980, 368 с.
- 3. Котречко С.А. Критическое напряжение скола и "хрупкая" прочность поликристаллических металлов // Металлофизика, 1992. 14, № 5, С. 37 41.
- 4. Писаренко Г. С., Лебедев А. А. Деформирование и прочность материалов при сложном напряженном состоянии К.: Наук. думка, 1976. 45 с.
- 5. Котречко С. А., Мешков Ю. Я. Кристаллы, металлы, конструкции. К. : Наук. думка, 2008. 295 с.
- 6. Копельман Л. А. Сопротивляемость сварных узлов хрупкому разрушению. Л.: "Машиностроение", 1978, 232 с.
- 7. Мешков Ю. Я., Пахаренко Г.А. Структура металла и хрупкость стальных изделий. Киев: Наук. Думка, 1985, 268 с.
- 8. Котречко С. А., Мешков Ю. Я. Концепция механической стабильности конструкционных сталей. // Проблемы прочности, 2009, № 2, с. 55 78.
- 9. Мешков Ю. Я. Хрупкая прочность металла в металлоконструкции. "Оборудование и технологии термической обработки металлов и сплавов". Сб. докладов 5-й Международной конференции ОТТОМ-5, часть II, Харьков, ННЦ ХФТИ, 2004, с. 6 14.