УДК 504.6 + 628.8.

СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА СПОСОБОВ УТИЛИЗАЦИИ ТЕПЛОТЫ ВЫБРОСОВ

ПОЛИЩУК С. 3. 1* , д. т. н., проф. КАСПИЙЦЕВА В. Ю. 2* , асс. ДЯДЬКИНА А. И. 3* , маг. ЛЕВЧЕНКО О. А. 4* , маг.

 1* Кафедра отопления, вентиляции и качества воздушной среды, Государственное высшее учебное заведение "Приднепровская государственная академия строительства и архитектуры", ул. Чернышевского, 24-а, 49600, Днепр, Украина, тел. +38(056) 756-34-92, e-mail:psz@mail.pgasa.dp.ua, ORCIDID: 0000-0002-6473-253X

^{2*}Кафедра отопления, вентиляции и качества воздушной среды, Государственное высшее учебное заведение "Приднепровская государственная академия строительства и архитектуры", ул. Чернышевского, 24-а, 49600, Днепр, Украина, тел. +38(056) 756-34-92, e-mail:ov@mail.pgasa.dp.ua, ORCID ID: 0000-0001-5977-106X

 3* Кафедра отопления, вентиляции и качества воздушной среды, Государственное высшее учебное заведение "Приднепровская государственная академия строительства и архитектуры", ул. Чернышевского, 24-а, 49600, Днепр, Украина, тел. +38(056) 756-34-92,e-mail: alinadyadkina777@gmail.com, 0000-0002-8405-270X

^{4*}Кафедра отопления, вентиляции и качества воздушной среды, Государственное высшее учебное заведение "Приднепровская государственная академия строительства и архитектуры", ул. Чернышевского, 24-а, 49600, Днепр, Украина, тел. +38(056) 756-34-92,e-mail: oolyusya@yandex.ru, ORCID ID: 0000-0001-9285-3999

Аннотация. *Цель*. Изучение способов утилизации тепла и сравнение характеристик таких выбросов, как: промышленные, вентиляционные, дымовые и печные. Возможность утилизации, а также определение преимуществ и недостатков использования тепла этих выбросов и влияние их на окружающую среду. *Методика*. Методика исследования базируется на результатах ранее опубликованных работ [6,7], где предоставлены результаты исследования способов утилизации тепла, основанные на общенаучных методах анализа и синтеза, а также аппарате математического анализа. *Результатыы*. Эффективным решением сбережения энергии в современном мире становятся теплоутилизаторы. В ходе работы были рассмотрены различные виды и способы утилизации тепла, получены выводы по энергоэффетивности и экологичности данных утановок. *Научная новизна*. Выполнена систематизация способов утилизации тепловых выбросов. *Практическая значимость*. Предложенные схемы утилизации позволят детально исследовать варианты использования тепла различных выбросов и сформулировать практические рекомендации по управлению ими.

Ключевые слова: промышленные выбросы; вентиляционные выбросы; дымовые выбросы; печные выбросы; утилизация тепла

ПОРІВНЯЛЬНА ХАРАКТЕРИСТИКА СПОСОБІВ УТИЛІЗАЦІЇ ТЕПЛОТИ ВИКИДІВ

ПОЛІЩУК С. 3.1^* , ∂ . m. μ ., $npo\phi$. КАСПІЙЦЕВА В. Ю. $^{2^*}$, acucm. ДЯДЬКІНА А. $I.^{3^*}$, maz. ЛЕВЧЕНКО $O.^{4^*}$, maz.

Аннотація. *Мета*. Вивчення способів утилізації тепла і порівняння характеристик таких викидів, як: промислові, вентиляційні, димові і пічні. Можливість утилізації, а також визначення переваг і недоліків використання тепла цих викидів та

^{1*} Кафедра опалення, вентиляції та якості повітряного середовища, Державний вищий навчальний заклад "Придніпровська державна академія будівництва та архітектури", вул. Чернишевського, 24-а, 49600, Дніпро, Україна, тел. +38(056) 756-34-92, e-mail:psz@mail.pgasa.dp.ua, ORCIDID: 0000-0002-6473-253X

^{2*} Кафедра опалення, вентиляції та якості повітряного середовища, Державний вищий навчальний заклад "Придніпровська державна академія будівництва та архітектури", вул. Чернишевського, 24-а, 49600, Дніпро, Україна, тел. +38(056) 756-34-92, e-mail:ov@mail.pgasa.dp.<u>ua</u>, ORCIDID: 0000-0001-5977-106X

^{3*}Кафедра опалення, вентиляції та якості повітряного середовища, Державний вищий навчальний заклад "Придніпровська державна академія будівництва та архітектури", вул. Чернишевського, 24-а, 49600, Дніпро, Україна, тел. +38 (093) 013-82-99, e-mail:alinadyadkina777@gmail.com, ORCID ID: 0000-0002-8405-270X

^{4*} Кафедра опалення, вентиляції та якості повітряного середовища, Державний вищий навчальний заклад "Придніпровська державна академія будівництва та архітектури", вул. Чернишевського, 24-а, 49600, Дніпро, Україна, тел. +38 (093) 013-82-99, e-mail: oolyusya@yandex.ru, ORCIDID: 0000-0001-9285-3999

вплив їх на навколишнє середовище. *Методика*. Методика дослідження базується на результатах раніше опублікованих робіт [6,7], де надані результати дослідження способів утилізації тепла, засновані на загальнонаукових методах аналізу і синтезу, а також апараті математичного аналізу. *Результати*. Ефективним вирішенням заощадження енергії в сучасному світі стають теплоутилізатори. В ході роботи були розглянуті різні види і способи утилізації тепла, отримані висновки по енергоефетивності і екологічності даних утановок. *Наукова новизна*. Виконана медологізація способів утилізації теплоти викидів. *Практична значимість*. Запропоновані схеми утилізації дозволять детально досліджувати варіанти використання тепла різних викидів і сформулювати практичні рекомендації з управління ними.

Ключові слова: промислові викиди; вентиляційні викиди; димові викиди; пічні викиди; утилізація тепла

COMPARATIVE ANALYSIS OF METHODS OF HEAT RECOVERY

POLISHCHUK S.^{1*}, Dr. Sc. (Tech.), Prof. KASPIYCEVA V.^{2*}, Assist. DIADKINA A.^{3*}, mag. LEVCHENKO O.^{4*}, mag.

1*Department of heating, ventilation and air quality, State Higher Education Establishment "Pridneprovsk State Academy of Civil Engineering and Architecture", 24-A, Chernishevskogo str., Dnipro 49600, Ukraine, t. +38 (0562) 46-98-19, e-mail: psz@mail.pgasa.dp.ua, ORCID ID: 0000-0002-6473-253X
2*Department of heating, ventilation and air quality, State Higher Education Establishment "Pridneprovsk State Academy of Civil

^{2*}Department of heating, ventilation and air quality, State Higher Education Establishment "Pridneprovsk State Academy of Civil Engineering and Architecture", 24-A, Chernishevskogo str., Dnipro 49600,Ukraine, t. +38(056) 756-34-92, e-mail:ov@mail.pgasa.dp.ua, ORCIDID: 0000-0001-5977-106X

^{3*}Department of heating, ventilation and air quality, State Higher Education Establishment "Pridneprovsk State Academy of Civil Engineering and Architecture", 24-A, Chernishevskogo str., Dnipro 49600,Ukraine, t.+38 (093) 013-82-99, e-mail:alinadyadkina777@gmail.com, ORCID ID: 0000-0002-8405-270X

^{4*} Department of heating, ventilation and air quality, State Higher Education Establishment "Pridneprovsk State Academy of Civil Engineering and Architecture", 24-A, Chernishevskogo str., Dnipro 49600,Ukraine, t.+38 (093) 013-82-99, e-mail: oolvusya@yandex.ru, ORCIDID: 0000-0001-9285-3999

Annotation. *Purpose*. Learning methods of heat recovery and emission characteristics of such a comparison, as industrial, ventilation, smoke and stove. Possibility of recycling, as well as certain advantages and disadvantages of using these heat emission and their impact on the environment. *Methodology*. Methods based on the results of research previously published work [6,7], where the results of the study are provided methods of heat recovery based on the general scientific analysis and synthesis methods and apparatus mathematical analysis. *Results*. Effective solution to save energy in the world today are heat exchanger. During the considered various types and methods of recycling heat obtained conclusions energoeffetivnosti utanovok and environmental data. *Scientific novelty*. Systematization of methods for utilization of thermal emissions has been carried out. *Practical significance*. The proposed scheme will enable waste to explore options for the use of heat in detail the various emissions and to formulate practical recommendations for their management.

Keywords: industrial emissions; vent emissions; smoke emissions; furnace emissions; heat recovery

Введение

Теплоту уходящих газов и скрытую теплоту парообразования водяных паров можно полезно использовать. Использование теплоты уходящих дымовых газов и скрытой теплоты парообразования водяных паров называется методом глубокой утилизации теплоты дымовых газов.

Цель

Цель исследования — изучение способов утилизации тепла и сравнение характеристик таких выбросов, как: промышленные, вентиляционные, дымовые и печные. Возможность утилизации, а также определение преимуществ и недостатков использования тепла этих выбросов и влияние их на окружающую среду.

Методика

Методика исследования базируется на результатах ранее опубликованных работ [6,7], где предоставлены результаты исследования способов утилизации тепла, основанные на общенаучных методах анализа и синтеза, а также аппарате математического анализа.

Результаты

В настоящее время существуют различные технологии реализации данного метода. Метод глубокой утилизации теплоты дымовых газов позволяет увеличить КПД топливопотребляющей установки на 2-3%, что соответствует снижению расхода топлива на 4-5 кг у.т. на 1 Гкал выработанного тепла. При внедрении данного метода, существуют технические сложности и ограничения связанные в основном со сложностью расчета процесса тепломассобмена при глубокой утилизации тепла уходящих дымовых газов и

необходимостью автоматизации процесса, однако эти сложности решаемы при современном уровне технологий. Для повсеместного внедрения данного необходима разработка методических указаний по расчету и установке систем глубокой утилизации тепла дымовых газов и принятие правовых актов запрещающих ввод в эксплуатацию топливоиспользующих установок на природном газе без применения глубокой утилизации тепла дымовых газов. Новизна: Наиболее часто используемый метод глубокой утилизации тепла дымовых заключается в том, что продукты сгорания природного газа после котла (либо после водяного экономайзера) температурой 130-150°C c разделяются на два потока. Приблизительно 70-80% газов направляются по главному газоходу и поступают в конденсационный теплоутилизатор поверхностного типа. остальная часть газов байпасный направляется В газоход. теплоутилизаторе продукты сгорания охлаждаются до 40-50°C, при этом происходит конденсация части водяных паров, что позволяет полезно использовать как физическую теплоту дымовых газов, так и скрытую теплоту конденсации части содержащихся в них водяных паров. Охлажденные продукты сгорания после каплеотделителя смешиваются с проходящими по байпасному неохлажденными продуктами сгорания и при температуре 65-70°C отводятся дымососом через дымовую трубу в атмосферу. В качестве нагреваемой среды в теплоутилизторе может использоваться исходная вода для нужд химводоподготовки или воздух, поступающий затем на горение. Для интенсификации теплообмена в теплоутилизаторе

возможна подача выпара атмосферного деаэратора в основной газоход. Необходимо также отметить возможность использования сконденсировавшихся обессоленных водяных паров в качестве исходной воды. Результатом внедрения данного метода, является повышение КПД котла брутто на 2-3%, с *<u>VЧетом</u>* использования скрытой парообразования водяных паров. К техническим ограничениям и сложностям при внедрении метода онжом отнести: сложность расчета процесса утилизации влажных газов, так как процесс теплообмена сопровождается процессами массобмена; необходимость поддержания заданных значений температуры и влажности уходящих дымовых газов, во избежание конденсации паров в газоходах и дымовой трубе; Необходимость избегать обмерзания поверхностей теплообмена нагревании холодных газов; При этом необходимо проведение испытаний газоходов и дымовых труб обработанных современными антикоррозионными покрытиями на предмет возможности снижения ограничений по температуре и влажности уходящих после теплоутилизационной установки дымовых газов. Массовое внедрение данного метода позволит снизить расход топлива и повлияет на экологическую обстановку путем снижения выбросов оксидов азота. Предполагаемыми методами внедрения являются: бюджетное финансирование; привлечение введение требований к вводу в инвестиций; эксплуатацию новых топливопотребляющих установок.

В таблице 1 приведена систематизация способов утилизации теплоты выбросов.

Таблица 1

Систематизация способов утилизации теплоты выбросов/ Systematization of methods of heat emission utilization

Источник, разновидн ость	Отрасль	Теплоноси тель	Способ реализации (передача тепла)	Способ использования,наз начение	Особенности устройства
промышл енные выбросы	металлургиче ские	вода	теплопроводность	для водоснабжения, для отопления	утилизация с помощью тепловых насосов и абсорбционных холодильных машин.
вентиляци онные выбросы	строительны е	вода	теплопроводность	для водоснабжения, для отопления	осуществляется: рециркуляцией части вытяжного воздуха; применением рекуперативных теплообменников-утилизаторов; применением регенеративых теплообменников-утилизаторов; применением двух рекуперативных теплообменников, которые используют промежуточный теплоноситель
дымовые выбросы	ЖКХ	водяные пары	теплопроводность	для водоснабжения, для отопления	применение поверхностного пластинчатого теплообменника без каких-либо органов регулирования расхода газов, где греющая среда и нагреваемая среда движутся противотоком
печные выбросы	индивидуаль ные	жидкость	теплопроводность	для водоснабжения, для отопления	расширение диапазона работы утилизационного водогрейного котла и повышение КПД устройства. Технический результат достигается тем, что в известном устройстве перепускной трубопровод соединяет регулирующий орган с утилизационным водогрейным котлом. Предлагаемое устройство содержит дизель, перепускной трубопровод, позволяющий направлять отработавшие газы либо в турбокомпрессор, либо непосредственно в утилизационный водогрейный котел при помощи регулирующего органа.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Барбашова, Н. В. Взаємозв'язок понять «екологічний ризик» та «екологічна безпека» / Н. В. Барбашова // Актуальні проблеми держави і права. 2014. Вип. 72 С. 245–253.
- 2. Благодатний, В. В. Розробка математичної моделі площадного джерела викидів [Електронний ресурс] / В. В. Благодатний, В. В. Фалько, В. Ю. Зінченко // Вісник НУК імені адмірала Макарова. 2013. № 2 Режим доступу: http://ev.nuos.edu.ua
- 3. Зинченко, В. Ю. Особенности оценки экологического риска для здоровья человека от группы стационарных источников загрязнения атмосферного воздуха / В. Ю. Зинченко, В. В. Фалько, Н. А. Емец // Екологія і природокористування. 2013. Вип. 16. С. 272–278.
- 4. Зінченко, В. Ю. Прогнозна оцінка екологічного ризику для людини від площадного джерела викидів при довільному напрямку вітру / В. Ю. Зінченко, В. В. Фалько, С. З. Поліщук, А. В. Полищук // Строительство. Материаловедение. Машиностроение. Сб. научн. тр. Вып. 76 Днепропетровск, ПГАСА, 2014. С. 132–136.
- 5. Фалько, В. В. Екологічний ризик для людини від забруднення атмосферного повітря (теоретична оцінка): [монографія] / В. В. Фалько, С. З. Поліщук, А. В. Токовенко (Артамонова). – Дніпропетровськ: Економіка, 2014. – 194 с.
- 6. Кушнир Е. Г.Методический подход к расчету распределения загрязняющих веществ по территории./С.Г.Кушнир// Строительство, материаловеденье, машиностроение.-Днепропетровск,2014.-Вип.76.-Стр153-157.

- 7. Полищук С. З. Утилизация тепла промышленных выбросов и качество воздушной среды. / Полищук С. З., Кушнир Е. Г., Лесникова И. Ю., Петренко В. О.,Васильева Ю. Д., Хоменко Е. А. // Строительство, материаловеденье, машиностроение.-Днепропетровск,2014.-Вип.76.-Стр212-220.
- 8. Пирумов А. И. Обеспыливаниевоздуха / А. И. Пирумов. Москва: Стройиздат, 1998. 296 с.
- 9. Ратушняк Г. С. Теоретичні основи технології очищення газових викидів / Г.С.Ратушняк Вінниця: ВДТУ, 2002. 96 с
- Ратушняк Г. С. Технічні засоби очищення газових викидів : навчальний посібник / Г. С. Ратушняк, О. Г. Лялюк Вінниця: ВНТУ, 2008. — 158 с.
- Сандуляк А. В. Новое в технике и технологии физических методов очистки жидкостей и газов / А.В.Сандуляк Киев: Вища школа, 1989. – 55 с.
- 12. Фалько, В. В. Анализ экологического риска для человека от группы точечных источников выбросов / В. В. Фалько, В. Ю. Зинченко // Охорона довкілля: зб. наук. статей XI Всеукраїнських Таліївських читань. X.: XHУ ім. В. Н. Каразіна, 2015. С. 96–100.
- Дунин-Борковский, И. В. Теория вероятностей и математическая статистика в технике / И. В. Дунин-Борковский, Н. В. Смирнов. – М.: Наука, 1965. – 511 с.

REFERENCES

- 1. Barbashova N.V. *Vzayemozvyazok ponyat'* "ekologichnyy ryzyk" ta "ekologichna bezpeka" [The realation of definitions "ecological risk" and "ecological safety"].// *Aktual'ni problem derzhavy i prava* [Issues of State and Law], 2014, issue 72, pp. 245-253.
- 2. Balgodantyy V.V., Falko V. V. and Zinchenko V. Yur. *Rozrobka matematychnoyi modeli ploshchadnogo dzherela vykydiv* [Mathematical scheme development for an areal pollutants emissions source].// *Visnuk NUK imeni admiral makarova* [Bulletin of Admiral Makarov National University of Shipbuilding], 2013, issue 2, Rezhym dostupu: http://ev.nuos.edu.ua
- 3. Zinchenko V.Yur., Falko V.V. and Yemets N.A., Osobennosti otsenki ekologicheskogo riska dlya zdorovya cheloveka ot gruppy statsyonarnyh istochnikov zagryazneniya atmosfernogo vozduha [Ecological risk assessment aspects for human health from a group of emissions point sources].// Ekologiya I pryrodokorystuvannya [Ecology and Nature Management], 2013, issue 16, pp. 272-278.
- 4. Zinchenko V.Yur., Falko V.V., Polishchuk S.Z. and Polishchuk A.V., *Prognozna otsinka ekologichnogo ryzyku dlya lyudyny vid ploshchadnogo dzherela vykydiv pry dovil'nomu napryamku vitru* [Ecological risk prognostic assessment for a human from an areal pollutants emission source under the conditions of arbitrary wind direction].// *Stroitel'stvo. Materialovedyeniye. Mashinostroyeniye.* [Building. Material Engineering. Machine Building], 2014, issue 76, pp. 132-136.
- 5. Falko V.V., Polishchuk S.Z. and Tokovenko(Artamonova) A.V., *Ekologichnyy ryzyk dlya lyudyny vid zabrudnenny aatmosfernogo povitrya (teoretychna otsinka)* [Ecological risk for a human from air pollution (theoretical assessment)], 2014, p.194.
- 6. Kushnir E.G *Methodological approach to the calculation of the distribution of pollutants throughout the territory.* / S.Kushnir // Construction, material science, machine building.-Dnepropetrovsk, 2014.-Vip.76.-Crp153-157.
- Polishchuk S.Z. Utilization of industrial heat and air quality. / Polishchuk S.Z, Kushnir E.G, Lesnikova I.Yu., Petrenko V.O, Vasilyeva Yu.D., Khomenko E.A // Construction, material science, machine building.-Dnepropetrovsk, 2014.-Vip.76.-Crp212-220.
- 8. Pirumov A.I Dedusting air / A.I.Pirumov. Moscow: Strovizdat, 1998. 296 p.
- 9. Ratushnyak GS Teoretichni tehnologiy [Basics of purified gas emission] / G.S.Ratushnyak Vinnitsa: VDTU, 2002. 96 p.
- Ratushnyak GS Tehnichni zasobi purified gas vikidiv: navchalny posibnik / G.S.Ratushnyak, O.G.Lyalyuk Vinnitsa: VNTU, 2008. - 158 p.
- 11. A.V Sandulyak *New in technology of physical methods of cleaning liquids and gases /* A.V.Sandulyak Kiev: Vishcha School, 1989. 55 p.
- 12. FalkoV.V., ZinchenkoV.Yur., Analiz ekologicheskogo riska dlya cheloveka ot gruppy tochechnyh istochnikov vybrosov [Ecological risk analysis for a human from a group of emissions point sources]. Okhorona dovkillya: zb. nauk. statey XI Vseukrayinskyh Taliyivs'kyh chytan' [Natural Environment Protection: Collection of Articles of XI All-Ukrainian Talyiyiv Readings], 2015, pp. 96-100'
- Dunin-Borkowski, V.I. Theory of probability and mathematical statistics in engineering / Dunin-Borkowski I.V., Smirnov N.V.. – M.: Nauka, 1965. – 511 p.

Стаття надійшла в редколегію 29.04.2017